Shahab Aldin Shojaeezadeh , Abdelrazek Elnashar , Tobias Karl David Weber
{"title":"A novel fusion of Sentinel-1 and Sentinel-2 with climate data for crop phenology estimation using Machine Learning","authors":"Shahab Aldin Shojaeezadeh , Abdelrazek Elnashar , Tobias Karl David Weber","doi":"10.1016/j.srs.2025.100227","DOIUrl":null,"url":null,"abstract":"<div><div>Crop phenology describes the physiological development stages of crops from planting to harvest which is valuable information for decision makers to plan and adapt agricultural management strategies. In the era of big Earth observation data ubiquity, attempts have been made to accurately detect crop phenology using Remote Sensing (RS) and high resolution weather data. However, most studies have focused on large scale predictions of phenology or developed methods which are not adequate to help crop modeler communities on leveraging Sentinel-1 and Sentinal-2 data and fusing them with high resolution climate data, using a novel framework. For this, we trained a Machine Learning (ML) LightGBM model to predict 13 phenological stages for eight major crops across Germany at 20 m scale. Observed phenologies were taken from German national phenology network (German Meteorological Service; DWD) between 2017 and 2021. We proposed a thorough feature selection analysis to find the best combination of RS and climate data to detect phenological stages. At national scale, predicted phenology resulted in a reasonable precision of R<sup>2</sup> > 0.43 and a low Mean Absolute Error of 6 days, averaged over all phenological stages and crops. The spatio-temporal analysis of the model predictions demonstrates its transferability across different spatial and temporal context of Germany. The results indicated that combining radar sensors with climate data yields a very promising performance for a multitude of practical applications. Moreover, these improvements are expected to be useful to generate highly valuable input for crop model calibrations and evaluations, facilitate informed agricultural decisions, and contribute to sustainable food production to address the increasing global food demand.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100227"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017225000331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crop phenology describes the physiological development stages of crops from planting to harvest which is valuable information for decision makers to plan and adapt agricultural management strategies. In the era of big Earth observation data ubiquity, attempts have been made to accurately detect crop phenology using Remote Sensing (RS) and high resolution weather data. However, most studies have focused on large scale predictions of phenology or developed methods which are not adequate to help crop modeler communities on leveraging Sentinel-1 and Sentinal-2 data and fusing them with high resolution climate data, using a novel framework. For this, we trained a Machine Learning (ML) LightGBM model to predict 13 phenological stages for eight major crops across Germany at 20 m scale. Observed phenologies were taken from German national phenology network (German Meteorological Service; DWD) between 2017 and 2021. We proposed a thorough feature selection analysis to find the best combination of RS and climate data to detect phenological stages. At national scale, predicted phenology resulted in a reasonable precision of R2 > 0.43 and a low Mean Absolute Error of 6 days, averaged over all phenological stages and crops. The spatio-temporal analysis of the model predictions demonstrates its transferability across different spatial and temporal context of Germany. The results indicated that combining radar sensors with climate data yields a very promising performance for a multitude of practical applications. Moreover, these improvements are expected to be useful to generate highly valuable input for crop model calibrations and evaluations, facilitate informed agricultural decisions, and contribute to sustainable food production to address the increasing global food demand.