Mechanism of high efficiency self-rotating grinding with low surface and subsurface damage in different oriented single-crystal diamond

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Yongkang Xin , Jing Lu , Yueqin Wu , Xipeng Xu
{"title":"Mechanism of high efficiency self-rotating grinding with low surface and subsurface damage in different oriented single-crystal diamond","authors":"Yongkang Xin ,&nbsp;Jing Lu ,&nbsp;Yueqin Wu ,&nbsp;Xipeng Xu","doi":"10.1016/j.jmatprotec.2025.118882","DOIUrl":null,"url":null,"abstract":"<div><div>Single-crystal diamond (SCD) machining faces significant challenges due to its extreme hardness and anisotropic cleavage behavior. Understanding different oriented SCD material removal behavior is crucial for achieving high-quality and efficient processing. This study presents an efficient self-rotating mechanical grinding method for processing (100), (110) and (111) SCD planes. By tailoring processing parameters to the crystallographic traits, material removal rate exceeding 54.86 μm/h are achieved for different crystal planes. Under the optimized parameters, the surface roughness (Sa) for the (100) plane is below 0.6 nm, with no subsurface damage observed. Through multiscale characterization (TEM/SEM/XPS/Raman) and molecular dynamics (MD) simulations, we reveal that subsurface damage across all planes originates from (111) cleavage, yet manifests differently: (100) planes cleavage along &lt; 110 &gt; directions, (110) planes cleavage along both &lt; 110 &gt; and orthogonal &lt; 112 &gt; /&lt; 1–12 &gt; directions, and (111) planes exhibit horizontal peeling combined with 60°-tilted cleavages. This study clarifies the deformation and damage mechanisms of diamond crystals during ultraprecision machining, which is crucial for achieving efficient and high-precision manufacturing of diamond components.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"340 ","pages":"Article 118882"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625001724","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-crystal diamond (SCD) machining faces significant challenges due to its extreme hardness and anisotropic cleavage behavior. Understanding different oriented SCD material removal behavior is crucial for achieving high-quality and efficient processing. This study presents an efficient self-rotating mechanical grinding method for processing (100), (110) and (111) SCD planes. By tailoring processing parameters to the crystallographic traits, material removal rate exceeding 54.86 μm/h are achieved for different crystal planes. Under the optimized parameters, the surface roughness (Sa) for the (100) plane is below 0.6 nm, with no subsurface damage observed. Through multiscale characterization (TEM/SEM/XPS/Raman) and molecular dynamics (MD) simulations, we reveal that subsurface damage across all planes originates from (111) cleavage, yet manifests differently: (100) planes cleavage along < 110 > directions, (110) planes cleavage along both < 110 > and orthogonal < 112 > /< 1–12 > directions, and (111) planes exhibit horizontal peeling combined with 60°-tilted cleavages. This study clarifies the deformation and damage mechanisms of diamond crystals during ultraprecision machining, which is crucial for achieving efficient and high-precision manufacturing of diamond components.
不同取向单晶金刚石表面和亚表面损伤低的高效自旋磨削机理
单晶金刚石(SCD)由于其极高的硬度和各向异性解理行为而面临着巨大的挑战。了解不同取向的SCD材料去除行为对于实现高质量和高效的处理至关重要。提出了一种加工(100)、(110)和(111)SCD平面的高效自旋转机械磨削方法。根据晶体形貌特点定制工艺参数,对不同晶面材料去除率均超过54.86 μm/h。在优化参数下,(100)平面的表面粗糙度(Sa)小于0.6 nm,未观察到亚表面损伤。通过多尺度特征(TEM / SEM / XPS /拉曼)和分子动力学(MD)模拟,我们表明,所有飞机源于地下损伤(111)乳沟,但表现不同:(100)飞机乳沟& lt; 110年  祝辞 方向,(110)飞机乳沟都& lt; 110年  祝辞 和正交& lt; 112年  祝辞 / & lt; 1 - 12 祝辞 方向,和(111)飞机展览水平剥结合60°倾斜的分裂。本研究阐明了金刚石晶体在超精密加工过程中的变形和损伤机理,这对于实现金刚石部件的高效、高精度制造至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信