Yubo Wang, Lulu Zhao, Deyan Wang, Kai Chen, Tiannan Luo, Jianglin Luo, Chengzhi Jiang, Zhoujian He, Heng Huang, Jiaxiao Xie, Yuanzhong Jiang, Jianquan Liu, Tao Ma
{"title":"Four near-complete genome assemblies reveal the landscape and evolution of centromeres in Salicaceae","authors":"Yubo Wang, Lulu Zhao, Deyan Wang, Kai Chen, Tiannan Luo, Jianglin Luo, Chengzhi Jiang, Zhoujian He, Heng Huang, Jiaxiao Xie, Yuanzhong Jiang, Jianquan Liu, Tao Ma","doi":"10.1186/s13059-025-03578-7","DOIUrl":null,"url":null,"abstract":"Centromeres play a crucial role in maintaining genomic stability during cell division. They are typically composed of large arrays of tandem satellite repeats, which hinder high-quality assembly and complicate our efforts to understand their evolution across species. Here, we use long-read sequencing to generate near-complete genome assemblies for two Populus and two Salix species belonging to the Salicaceae family and characterize the genetic and epigenetic landscapes of their centromeres. The results show that only limited satellite repeats are present as centromeric components in these species, while most of them are located outside the centromere but exhibit a homogenized structure similar to that of the Arabidopsis centromeres. Instead, the Salicaceae centromeres are mainly composed of abundant transposable elements, including CRM and ATHILA, while LINE elements are exclusively discovered in the poplar centromeres. Comparative analysis reveals that these centromeric repeats are extensively expanded and interspersed with satellite arrays in a species-specific and chromosome-specific manner, driving rapid turnover of centromeres both in sequence compositions and genomic locations in the Salicaceae. Our results highlight the dynamic evolution of diverse centromeric landscapes among closely related species mediated by satellite homogenization and widespread invasions of transposable elements and shed further light on the role of centromere in genome evolution and species diversification.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"13 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03578-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Centromeres play a crucial role in maintaining genomic stability during cell division. They are typically composed of large arrays of tandem satellite repeats, which hinder high-quality assembly and complicate our efforts to understand their evolution across species. Here, we use long-read sequencing to generate near-complete genome assemblies for two Populus and two Salix species belonging to the Salicaceae family and characterize the genetic and epigenetic landscapes of their centromeres. The results show that only limited satellite repeats are present as centromeric components in these species, while most of them are located outside the centromere but exhibit a homogenized structure similar to that of the Arabidopsis centromeres. Instead, the Salicaceae centromeres are mainly composed of abundant transposable elements, including CRM and ATHILA, while LINE elements are exclusively discovered in the poplar centromeres. Comparative analysis reveals that these centromeric repeats are extensively expanded and interspersed with satellite arrays in a species-specific and chromosome-specific manner, driving rapid turnover of centromeres both in sequence compositions and genomic locations in the Salicaceae. Our results highlight the dynamic evolution of diverse centromeric landscapes among closely related species mediated by satellite homogenization and widespread invasions of transposable elements and shed further light on the role of centromere in genome evolution and species diversification.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.