Microwave dielectric properties of temperature-stable (Na0.5Bi0.5)MoO4–SrMoO4 ceramics sintered at ultra-low temperature

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Ahmed Redwan Hazaa Alzakree, Chang-Hao Wang, Muhammad Shehbaz, Wei Wang, Moustafa Adel Darwish, Tao Zhou, Di-Ming Xu, Chao Du, Di Zhou
{"title":"Microwave dielectric properties of temperature-stable (Na0.5Bi0.5)MoO4–SrMoO4 ceramics sintered at ultra-low temperature","authors":"Ahmed Redwan Hazaa Alzakree,&nbsp;Chang-Hao Wang,&nbsp;Muhammad Shehbaz,&nbsp;Wei Wang,&nbsp;Moustafa Adel Darwish,&nbsp;Tao Zhou,&nbsp;Di-Ming Xu,&nbsp;Chao Du,&nbsp;Di Zhou","doi":"10.1111/jace.20504","DOIUrl":null,"url":null,"abstract":"<p>Ever-growing wireless communication industry demands low loss dielectric ceramics with exceptional microwave dielectric properties and ultra-low sintering temperatures. In this work, a solid solution (1 − <i>x</i>)Na<sub>0.5</sub>Bi<sub>0.5</sub>MoO<sub>4</sub>–<i>x</i>SrMoO<sub>4</sub> referred as (1 − <i>x</i>)NBM–<i>x</i>SM (<i>x</i> = 0.4–0.9) was prepared through replacing (NaBi)<sup>2+</sup> by Sr<sup>2+</sup>. X-ray diffraction analysis (XRD) revealed a solid solution ceramics characterized by a tetragonal scheelite structure. Scanning electron microscopy (SEM) and relative density further confirmed the formation of low porosity and high density scheelite solid solution ceramics. Optimum microwave dielectric performance with a relative permittivity of 15.48, <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>×</mo>\n <mi>f</mi>\n </mrow>\n <annotation>$Q \\times f$</annotation>\n </semantics></math> value of 18 763 GHz and a near-zero temperature coefficient of resonant frequency (<span></span><math>\n <semantics>\n <msub>\n <mi>τ</mi>\n <mi>f</mi>\n </msub>\n <annotation>${\\tau _f}$</annotation>\n </semantics></math> = +2.7 ppm/°C) was achieved at <i>x</i> = 0.7 composition with ultra-low sintering temperature of 660°C. In order to validate its microwave device application, a prototype dielectric resonator antenna (DRA) was fabricated using the 0.3NBM–0.7SM ceramic. DRA showcased excellent radiation performance, with impedance bandwidth of 200 MHz <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>|</mo>\n <msub>\n <mi>S</mi>\n <mn>11</mn>\n </msub>\n <mo>|</mo>\n <mo>&lt;</mo>\n <mo>−</mo>\n <mn>10</mn>\n <mspace></mspace>\n <mspace></mspace>\n <mi>dB</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(|{S_{11}}| &lt; - 10\\,\\,{\\mathrm{dB}})$</annotation>\n </semantics></math> at a working frequency of 6.83 GHz and realized gain of 5.66 dBi. The co-firing investigations demonstrate Ag powder exhibits excellent chemical compatibility with the (1 − <i>x</i>)NBM–<i>x</i>SM ceramics, confirming a promising potential of the (1 − <i>x</i>)NBM–<i>x</i>SM (<i>x</i> = 0.4–0.9) solid solution ceramics for ultra-low temperature co-fired ceramics-based microwave application.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20504","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ever-growing wireless communication industry demands low loss dielectric ceramics with exceptional microwave dielectric properties and ultra-low sintering temperatures. In this work, a solid solution (1 − x)Na0.5Bi0.5MoO4xSrMoO4 referred as (1 − x)NBM–xSM (x = 0.4–0.9) was prepared through replacing (NaBi)2+ by Sr2+. X-ray diffraction analysis (XRD) revealed a solid solution ceramics characterized by a tetragonal scheelite structure. Scanning electron microscopy (SEM) and relative density further confirmed the formation of low porosity and high density scheelite solid solution ceramics. Optimum microwave dielectric performance with a relative permittivity of 15.48, Q × f $Q \times f$ value of 18 763 GHz and a near-zero temperature coefficient of resonant frequency ( τ f ${\tau _f}$  = +2.7 ppm/°C) was achieved at x = 0.7 composition with ultra-low sintering temperature of 660°C. In order to validate its microwave device application, a prototype dielectric resonator antenna (DRA) was fabricated using the 0.3NBM–0.7SM ceramic. DRA showcased excellent radiation performance, with impedance bandwidth of 200 MHz ( | S 11 | < 10 dB ) $(|{S_{11}}| < - 10\,\,{\mathrm{dB}})$ at a working frequency of 6.83 GHz and realized gain of 5.66 dBi. The co-firing investigations demonstrate Ag powder exhibits excellent chemical compatibility with the (1 − x)NBM–xSM ceramics, confirming a promising potential of the (1 − x)NBM–xSM (x = 0.4–0.9) solid solution ceramics for ultra-low temperature co-fired ceramics-based microwave application.

超低温烧结温度稳定(Na0.5Bi0.5) MoO4-SrMoO4陶瓷的微波介电性能
日益增长的无线通信行业需要具有优异微波介电性能和超低烧结温度的低损耗介电陶瓷。本文以Sr2+取代(NaBi)2+,制备了(1−x) Na0.5Bi0.5MoO4-xSrMoO4固溶体(1−x) NBM-xSM (x = 0.4-0.9)。x射线衍射分析(XRD)表明,该固体陶瓷具有四方白钨矿结构。扫描电镜(SEM)和相对密度进一步证实了低孔隙率、高密度白钨矿固溶体陶瓷的形成。最佳微波介电性能,相对介电常数为15.48;在x = 0.7、660℃的超低烧结温度下,获得了近似于零的谐振频率温度系数τ f$ {\tau _f}$ = +2.7 ppm/°C。为了验证其在微波器件中的应用,采用0.3NBM-0.7SM陶瓷制作了介质谐振器天线(DRA)的原型。DRA显示出优异的辐射性能,阻抗带宽为200 MHz (| S 11 | <;−10 dB) $(|{S_{11}}| <;- 10\,\,{\mathrm{dB}})$,工作频率为6.83 GHz,实现增益为5.66 dBi。共烧研究表明,Ag粉末与(1−x) NBM-xSM陶瓷具有良好的化学相容性,证实了(1−x) NBM-xSM (x = 0.4-0.9)固溶体陶瓷在超低温共烧陶瓷微波应用中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信