Mass transport in low-temperature ceramic sintering and printing assisted by pressure and water

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Fan Fei, Xuan Song
{"title":"Mass transport in low-temperature ceramic sintering and printing assisted by pressure and water","authors":"Fan Fei,&nbsp;Xuan Song","doi":"10.1111/jace.20479","DOIUrl":null,"url":null,"abstract":"<p>Ceramic processing through the combined use of pressure and water offers a promising approach to achieve accelerated mass transport between ceramic particles at reduced temperatures, providing a sustainable and low-temperature method for ceramic synthesis and three-dimensional printing. While previous studies have explored the roles of pressure and water in the fusion and densification of ceramic particles, the underlying mechanisms, especially for micro-sized ceramic particles, are still debated. This paper aims to propose a potential mechanism for the fusion and densification of micro-sized ceramic particles under the effect of pressure and water. Using a multi-phase level-set simulation model, our results suggest that stress-assisted fracture and dissolution of interparticle contact points can be key factors driving the densification of micro-sized ceramic particles in the presence of pressure and water.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20479","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20479","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic processing through the combined use of pressure and water offers a promising approach to achieve accelerated mass transport between ceramic particles at reduced temperatures, providing a sustainable and low-temperature method for ceramic synthesis and three-dimensional printing. While previous studies have explored the roles of pressure and water in the fusion and densification of ceramic particles, the underlying mechanisms, especially for micro-sized ceramic particles, are still debated. This paper aims to propose a potential mechanism for the fusion and densification of micro-sized ceramic particles under the effect of pressure and water. Using a multi-phase level-set simulation model, our results suggest that stress-assisted fracture and dissolution of interparticle contact points can be key factors driving the densification of micro-sized ceramic particles in the presence of pressure and water.

Abstract Image

压力和水辅助下低温陶瓷烧结和印刷中的质量输运
通过结合使用压力和水的陶瓷加工提供了一种很有前途的方法,可以在低温下实现陶瓷颗粒之间的加速质量传递,为陶瓷合成和三维打印提供了一种可持续的低温方法。虽然以前的研究已经探索了压力和水在陶瓷颗粒融合和致密化中的作用,但潜在的机制,特别是对于微尺寸的陶瓷颗粒,仍然存在争议。本文旨在提出在压力和水的作用下微尺寸陶瓷颗粒的融合和致密化的潜在机制。利用多相水平集模拟模型,我们的研究结果表明,在压力和水存在的情况下,应力辅助破裂和颗粒间接触点的溶解可能是驱动微尺寸陶瓷颗粒致密化的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信