Costas A. Kokke;Mario Coutino;Richard Heusdens;Geert Leus
{"title":"Array Design for Angle of Arrival Estimation Using the Worst-Case Two-Target Cramér-Rao Bound","authors":"Costas A. Kokke;Mario Coutino;Richard Heusdens;Geert Leus","doi":"10.1109/OJSP.2025.3558686","DOIUrl":null,"url":null,"abstract":"Sparse array design is used to help reduce computational, hardware, and power requirements compared to uniform arrays while maintaining acceptable performance. Although minimizing the Cramér-Rao bound has been adopted previously for sparse sensing, it did not consider multiple targets and unknown target directions. To handle the unknown target directions when optimizing the Cramér-Rao bound, we propose to use the worst-case Cramér-Rao bound of two uncorrelated equal power sources with arbitrary angles. This new worst-case two-target Cramér-Rao bound metric has some resemblance to the peak sidelobe level metric which is commonly used in unknown multi-target scenarios. We cast the sensor selection problem for 3-D arrays using the worst-case two-target Cramér-Rao bound as a convex semi-definite program and obtain the binary selection by randomized rounding. We illustrate the proposed method through numerical examples, comparing it to solutions obtained by minimizing the single-target Cramér-Rao bound, minimizing the Cramér-Rao bound for known target angles, the concentric rectangular array and the boundary array. We show that our method selects a combination of edge and center elements, which contrasts with solutions obtained by minimizing the single-target Cramér-Rao bound. The proposed selections also exhibit lower peak sidelobe levels without the need for sidelobe level constraints.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"453-467"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955272/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse array design is used to help reduce computational, hardware, and power requirements compared to uniform arrays while maintaining acceptable performance. Although minimizing the Cramér-Rao bound has been adopted previously for sparse sensing, it did not consider multiple targets and unknown target directions. To handle the unknown target directions when optimizing the Cramér-Rao bound, we propose to use the worst-case Cramér-Rao bound of two uncorrelated equal power sources with arbitrary angles. This new worst-case two-target Cramér-Rao bound metric has some resemblance to the peak sidelobe level metric which is commonly used in unknown multi-target scenarios. We cast the sensor selection problem for 3-D arrays using the worst-case two-target Cramér-Rao bound as a convex semi-definite program and obtain the binary selection by randomized rounding. We illustrate the proposed method through numerical examples, comparing it to solutions obtained by minimizing the single-target Cramér-Rao bound, minimizing the Cramér-Rao bound for known target angles, the concentric rectangular array and the boundary array. We show that our method selects a combination of edge and center elements, which contrasts with solutions obtained by minimizing the single-target Cramér-Rao bound. The proposed selections also exhibit lower peak sidelobe levels without the need for sidelobe level constraints.