{"title":"Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation","authors":"Wenbo Hu;Xin Sun;Qiang Liu;Le Wu;Liang Wang","doi":"10.1109/TKDE.2025.3552658","DOIUrl":null,"url":null,"abstract":"Post-click conversion rate (CVR) is a reliable indicator of online customers’ preferences, making it crucial for developing recommender systems. A major challenge in predicting CVR is severe selection bias, arising from users’ inherent self-selection behavior and the system’s item selection process. To mitigate this issue, the inverse propensity score (IPS) is employed to weight the prediction error of each observed instance. However, current propensity score estimations are unreliable due to the lack of a quality measure. To address this, we evaluate the quality of propensity scores from the perspective of uncertainty calibration, proposing the use of Expected Calibration Error (ECE) as a measure of propensity-score quality, which quantifies the extent to which predicted probabilities are overconfident by assessing the difference between predicted probabilities and actual observed frequencies. Miscalibrated propensity scores can lead to distorted IPS weights, thereby compromising the debiasing process in CVR prediction. In this paper, we introduce a model-agnostic calibration framework for propensity-based debiasing of CVR predictions. Theoretical analysis on bias and generalization bounds demonstrates the superiority of calibrated propensity estimates over uncalibrated ones. Experiments conducted on the Coat, Yahoo and KuaiRand datasets show improved uncertainty calibration, as evidenced by lower ECE values, leading to enhanced CVR prediction outcomes.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3781-3793"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10954271/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Post-click conversion rate (CVR) is a reliable indicator of online customers’ preferences, making it crucial for developing recommender systems. A major challenge in predicting CVR is severe selection bias, arising from users’ inherent self-selection behavior and the system’s item selection process. To mitigate this issue, the inverse propensity score (IPS) is employed to weight the prediction error of each observed instance. However, current propensity score estimations are unreliable due to the lack of a quality measure. To address this, we evaluate the quality of propensity scores from the perspective of uncertainty calibration, proposing the use of Expected Calibration Error (ECE) as a measure of propensity-score quality, which quantifies the extent to which predicted probabilities are overconfident by assessing the difference between predicted probabilities and actual observed frequencies. Miscalibrated propensity scores can lead to distorted IPS weights, thereby compromising the debiasing process in CVR prediction. In this paper, we introduce a model-agnostic calibration framework for propensity-based debiasing of CVR predictions. Theoretical analysis on bias and generalization bounds demonstrates the superiority of calibrated propensity estimates over uncalibrated ones. Experiments conducted on the Coat, Yahoo and KuaiRand datasets show improved uncertainty calibration, as evidenced by lower ECE values, leading to enhanced CVR prediction outcomes.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.