{"title":"Adaptive PPO With Multi-Armed Bandit Clipping and Meta-Control for Robust Power Grid Operation Under Adversarial Attacks","authors":"Mohamed Massaoudi;Katherine R. Davis","doi":"10.1109/ACCESS.2025.3563419","DOIUrl":null,"url":null,"abstract":"The seamless and resilient operation of power grids is crucial for ensuring a reliable electricity supply. However, maintaining high operational stability is increasingly challenging due to evolving grid complexities and potential adversarial threats. This paper proposes a novel composite enhanced proximal policy optimization (CePPO) algorithm to improve power grid operation under adversarial conditions. Specifically, our approach introduces three key innovations: 1) multi-armed bandit (MAB) mechanism for dynamic epsilon-clipping that adaptively adjusts exploration-exploitation trade-offs; 2) meta-controller framework that automatically tunes hyperparameters including the activation learning rate (ALR) penalties and exploration factors; and 3) integrated gradient-based optimization approach that combines policy gradients with environmental feedback. The effectiveness of the proposed model on the IEEE 14-bus system demonstrates that the CePPO achieves approximately 50% higher average rewards and 51% longer stability periods compared to standard PPO while reducing computational overhead by 35%. CePPO demonstrates superior performance under adversarial attacks compared to baseline approaches. The simulation results validate that CePPO’s adaptive parameter tuning and enhanced exploration strategies make it particularly well-suited for the dynamic nature of power grid control. To foster further research and reproducibility, the code is available upon request at <uri>https://github.com/Dr-Kate-Davis-s-Research-Team/DRL-CP.S</uri>","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"73586-73602"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10973609/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The seamless and resilient operation of power grids is crucial for ensuring a reliable electricity supply. However, maintaining high operational stability is increasingly challenging due to evolving grid complexities and potential adversarial threats. This paper proposes a novel composite enhanced proximal policy optimization (CePPO) algorithm to improve power grid operation under adversarial conditions. Specifically, our approach introduces three key innovations: 1) multi-armed bandit (MAB) mechanism for dynamic epsilon-clipping that adaptively adjusts exploration-exploitation trade-offs; 2) meta-controller framework that automatically tunes hyperparameters including the activation learning rate (ALR) penalties and exploration factors; and 3) integrated gradient-based optimization approach that combines policy gradients with environmental feedback. The effectiveness of the proposed model on the IEEE 14-bus system demonstrates that the CePPO achieves approximately 50% higher average rewards and 51% longer stability periods compared to standard PPO while reducing computational overhead by 35%. CePPO demonstrates superior performance under adversarial attacks compared to baseline approaches. The simulation results validate that CePPO’s adaptive parameter tuning and enhanced exploration strategies make it particularly well-suited for the dynamic nature of power grid control. To foster further research and reproducibility, the code is available upon request at https://github.com/Dr-Kate-Davis-s-Research-Team/DRL-CP.S
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.