Multiscale Weisfeiler-Leman Directed Graph Neural Networks for Prerequisite-Link Prediction

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yupei Zhang;Xiran Qu;Shuhui Liu;Yan Pang;Xuequn Shang
{"title":"Multiscale Weisfeiler-Leman Directed Graph Neural Networks for Prerequisite-Link Prediction","authors":"Yupei Zhang;Xiran Qu;Shuhui Liu;Yan Pang;Xuequn Shang","doi":"10.1109/TKDE.2025.3552045","DOIUrl":null,"url":null,"abstract":"Prerequisite-link Prediction (PLP) aims to discover the condition relations of a specific event or a concerned variable, which is a fundamental problem in a large number of fields, such as educational data mining. Current studies on PLP usually developed graph neural networks (GNNs) to learn the representations of pairs of nodes. However, these models fail to distinguish non-isomorphic graphs and integrate multiscale structures, leading to the insufficient expressive capability of GNNs. To this end, we in this paper proposed <italic>k</i>-dimensional Weisferiler-Leman directed GNNs, dubbed <italic>k</i>-WediGNNs, to recognize non-isomorphic graphs via the Weisferiler-Leman algorithm. Furthermore, we integrated the multiscale structures of a directed graph into <italic>k</i>-WediGNNs, dubbed multiscale <italic>k</i>-WediGNNs, from the bidirected views of in-degree and out-degree. With the Siamese network, the proposed models are extended to address the problem of PLP. Besides, the expressive power is then interpreted via theoretical proofs. The experiments were conducted on four publicly available datasets for concept prerequisite relation prediction (CPRP). The results show that the proposed models achieve better performance than the state-of-the-art approaches, where our multiscale <italic>k</i>-WediGNN achieves a new benchmark in the task of CPRP.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3556-3569"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930673/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Prerequisite-link Prediction (PLP) aims to discover the condition relations of a specific event or a concerned variable, which is a fundamental problem in a large number of fields, such as educational data mining. Current studies on PLP usually developed graph neural networks (GNNs) to learn the representations of pairs of nodes. However, these models fail to distinguish non-isomorphic graphs and integrate multiscale structures, leading to the insufficient expressive capability of GNNs. To this end, we in this paper proposed k-dimensional Weisferiler-Leman directed GNNs, dubbed k-WediGNNs, to recognize non-isomorphic graphs via the Weisferiler-Leman algorithm. Furthermore, we integrated the multiscale structures of a directed graph into k-WediGNNs, dubbed multiscale k-WediGNNs, from the bidirected views of in-degree and out-degree. With the Siamese network, the proposed models are extended to address the problem of PLP. Besides, the expressive power is then interpreted via theoretical proofs. The experiments were conducted on four publicly available datasets for concept prerequisite relation prediction (CPRP). The results show that the proposed models achieve better performance than the state-of-the-art approaches, where our multiscale k-WediGNN achieves a new benchmark in the task of CPRP.
多尺度Weisfeiler-Leman有向图神经网络用于前提链路预测
先决条件链接预测(PLP)旨在发现特定事件或相关变量的条件关系,这是许多领域的基本问题,例如教育数据挖掘。目前的PLP研究通常采用图神经网络(gnn)来学习节点对的表示。然而,这些模型无法区分非同构图和整合多尺度结构,导致gnn的表达能力不足。为此,我们在本文中提出了k维Weisferiler-Leman定向gnn,称为k- wedignn,通过Weisferiler-Leman算法来识别非同构图。此外,我们从入度和出度的双向角度将有向图的多尺度结构集成到k- wedignn中,称为多尺度k- wedignn。通过Siamese网络,将所提出的模型扩展到解决PLP问题。然后,通过理论证明来解释表达能力。在四个公开的概念前提关系预测(CPRP)数据集上进行实验。结果表明,所提出的模型比目前最先进的方法取得了更好的性能,其中我们的多尺度k-WediGNN在CPRP任务中达到了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信