Che-Ming Chang;Jie-Hong Roland Jiang;Dah-Wei Chiou;Ting Hsu;Guin-Dar Lin
{"title":"Quantum Circuit Compilation for Trapped-Ion Processors With the Drive-Through Architecture","authors":"Che-Ming Chang;Jie-Hong Roland Jiang;Dah-Wei Chiou;Ting Hsu;Guin-Dar Lin","doi":"10.1109/TQE.2025.3548423","DOIUrl":null,"url":null,"abstract":"Trapped-ion technologies stand out as leading contenders in the pursuit of quantum computing, due to their capacity for highly entangled qubits. Among many proposed trapped-ion architectures, the “drive-through” architecture has drawn increasing attention, notably for its remarkable ability to minimize heat generation, which is crucial for low-temperature operation and thermal noise reduction, thus reliable quantum computation. We present the first compilation system tailored for the drive-through architecture to achieve high-fidelity computation for intended quantum programs. Our approach accommodates the unique features of the new architecture that utilize transport gates to facilitate direct entanglement between static qubits and communication qubits. We optimize the qubit placement that changes over time for each trap, considering the cost of qubit swapping. Our method strategically balances the gate and swap distances, significantly improving the overall fidelity across various benchmarks.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10915697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10915697/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Trapped-ion technologies stand out as leading contenders in the pursuit of quantum computing, due to their capacity for highly entangled qubits. Among many proposed trapped-ion architectures, the “drive-through” architecture has drawn increasing attention, notably for its remarkable ability to minimize heat generation, which is crucial for low-temperature operation and thermal noise reduction, thus reliable quantum computation. We present the first compilation system tailored for the drive-through architecture to achieve high-fidelity computation for intended quantum programs. Our approach accommodates the unique features of the new architecture that utilize transport gates to facilitate direct entanglement between static qubits and communication qubits. We optimize the qubit placement that changes over time for each trap, considering the cost of qubit swapping. Our method strategically balances the gate and swap distances, significantly improving the overall fidelity across various benchmarks.