A Comprehensive Cross-Model Framework for Benchmarking the Performance of Quantum Hamiltonian Simulations

Avimita Chatterjee;Sonny Rappaport;Anish Giri;Sonika Johri;Timothy Proctor;David E. Bernal Neira;Pratik Sathe;Thomas Lubinski
{"title":"A Comprehensive Cross-Model Framework for Benchmarking the Performance of Quantum Hamiltonian Simulations","authors":"Avimita Chatterjee;Sonny Rappaport;Anish Giri;Sonika Johri;Timothy Proctor;David E. Bernal Neira;Pratik Sathe;Thomas Lubinski","doi":"10.1109/TQE.2025.3558090","DOIUrl":null,"url":null,"abstract":"Quantum Hamiltonian simulation is one of the most promising applications of quantum computing and forms the basis for many quantum algorithms. Benchmarking them is an important gauge of progress in quantum computing technology. We present a methodology and software framework to evaluate various facets of the performance of gate-based quantum computers on Trotterized quantum Hamiltonian evolution. We propose three distinct modes for benchmarking: 1) comparing simulation on a real device to that on a noiseless classical simulator; 2) comparing simulation on a real device with exact diagonalization results; and 3) using scalable mirror circuit techniques to assess hardware performance in scenarios beyond classical simulation methods. We demonstrate this framework on five Hamiltonian models from the HamLib library: the Fermi–Hubbard and Bose–Hubbard models, the transverse-field Ising model, the Heisenberg model, and the Max3SAT problem. Experiments were conducted using Qiskit's Aer simulator, BlueQubit's CPU cluster and GPU simulators, and IBM's quantum hardware. Our framework, extendable to other Hamiltonians, provides comprehensive performance profiles that reveal hardware and algorithmic limitations and measure both fidelity and execution times, identifying crossover points where quantum hardware outperforms CPU/GPU simulators.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949677","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10949677/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Hamiltonian simulation is one of the most promising applications of quantum computing and forms the basis for many quantum algorithms. Benchmarking them is an important gauge of progress in quantum computing technology. We present a methodology and software framework to evaluate various facets of the performance of gate-based quantum computers on Trotterized quantum Hamiltonian evolution. We propose three distinct modes for benchmarking: 1) comparing simulation on a real device to that on a noiseless classical simulator; 2) comparing simulation on a real device with exact diagonalization results; and 3) using scalable mirror circuit techniques to assess hardware performance in scenarios beyond classical simulation methods. We demonstrate this framework on five Hamiltonian models from the HamLib library: the Fermi–Hubbard and Bose–Hubbard models, the transverse-field Ising model, the Heisenberg model, and the Max3SAT problem. Experiments were conducted using Qiskit's Aer simulator, BlueQubit's CPU cluster and GPU simulators, and IBM's quantum hardware. Our framework, extendable to other Hamiltonians, provides comprehensive performance profiles that reveal hardware and algorithmic limitations and measure both fidelity and execution times, identifying crossover points where quantum hardware outperforms CPU/GPU simulators.
量子哈密顿模拟性能基准测试的综合跨模型框架
量子哈密顿模拟是量子计算最有前途的应用之一,是许多量子算法的基础。对它们进行基准测试是衡量量子计算技术进步的重要指标。我们提出了一种方法和软件框架来评估基于门的量子计算机在Trotterized量子哈密顿演化上的性能的各个方面。我们提出了三种不同的基准测试模式:1)将真实设备上的模拟与无噪声的经典模拟器上的模拟进行比较;2)将在实际设备上的仿真与精确对角化结果进行比较;3)使用可扩展镜像电路技术来评估超出经典仿真方法的场景中的硬件性能。我们在HamLib库中的五个哈密顿模型上演示了这个框架:费米-哈伯德和玻色-哈伯德模型、横场Ising模型、海森堡模型和Max3SAT问题。实验使用Qiskit的Aer模拟器、BlueQubit的CPU集群和GPU模拟器以及IBM的量子硬件进行。我们的框架可扩展到其他hamilton,提供全面的性能概况,揭示硬件和算法的限制,并测量保真度和执行时间,确定量子硬件优于CPU/GPU模拟器的交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信