{"title":"Optimised conjugate prior for model structure estimation in the exponential family","authors":"Miroslav Kárný","doi":"10.1016/j.eswa.2025.127716","DOIUrl":null,"url":null,"abstract":"<div><div>Model structure estimation has gained attention owing to the challenge of analysing large, scarce, and poorly informative data. Bayesian hypothesis testing <em>formally</em> addresses this issue. For nested model structures, an efficient search method provides the maximum a posteriori (MAP) estimate, even in extensive hypothesis spaces. However, estimation quality highly depends on prior probability densities of unknown, hypothesis-specific parameters. Existing solutions mitigate this issue by estimating multivariate hyperparameters of these priors; however, these solutions restrict the hyperparameter space, limiting estimation quality. This study enhances model structure estimation for exponential family models by imposing minimal constraints on the selected hyperparameter. For Gaussian models with linearly weighted auto-regression and regression variables, the MAP hyperparameter estimate is analytic and requires solving only one equation for a scalar variable. Experiments, including a complex simulation and multi-step forecasting of futures prices, confirm the solution quality gains.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"283 ","pages":"Article 127716"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425013387","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Model structure estimation has gained attention owing to the challenge of analysing large, scarce, and poorly informative data. Bayesian hypothesis testing formally addresses this issue. For nested model structures, an efficient search method provides the maximum a posteriori (MAP) estimate, even in extensive hypothesis spaces. However, estimation quality highly depends on prior probability densities of unknown, hypothesis-specific parameters. Existing solutions mitigate this issue by estimating multivariate hyperparameters of these priors; however, these solutions restrict the hyperparameter space, limiting estimation quality. This study enhances model structure estimation for exponential family models by imposing minimal constraints on the selected hyperparameter. For Gaussian models with linearly weighted auto-regression and regression variables, the MAP hyperparameter estimate is analytic and requires solving only one equation for a scalar variable. Experiments, including a complex simulation and multi-step forecasting of futures prices, confirm the solution quality gains.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.