Shadow masks predictions in SPARC tokamak plasma-facing components using HEAT code and machine learning methods

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
D. Corona , M. Scotto d’Abusco , M. Churchill , S. Munaretto , A. Kleiner , A. Wingen , T. Looby
{"title":"Shadow masks predictions in SPARC tokamak plasma-facing components using HEAT code and machine learning methods","authors":"D. Corona ,&nbsp;M. Scotto d’Abusco ,&nbsp;M. Churchill ,&nbsp;S. Munaretto ,&nbsp;A. Kleiner ,&nbsp;A. Wingen ,&nbsp;T. Looby","doi":"10.1016/j.fusengdes.2025.115010","DOIUrl":null,"url":null,"abstract":"<div><div>This work uses machine learning (ML) to complement HEAT (Heat flux Engineering Analysis Toolkit) by developing 3-D footprint surrogate models for fast and accurate heat load calculations in the divertor of the SPARC tokamak. The focus is on shadowed regions, or magnetic shadows, caused by the 3-D geometry of plasma-facing components (PFCs). ML classifiers are employed to create a surrogate model for HEAT generated shadow masks, predicting these shadow masks and divertor heat flux profiles based on a diverse range of equilibria and only the plasma current, safety factor(q95) at the edge, and magnetic flux angles as input parameters. The ultimate goal is to integrate the model for real-time control and future operational decisions.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"217 ","pages":"Article 115010"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625002108","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work uses machine learning (ML) to complement HEAT (Heat flux Engineering Analysis Toolkit) by developing 3-D footprint surrogate models for fast and accurate heat load calculations in the divertor of the SPARC tokamak. The focus is on shadowed regions, or magnetic shadows, caused by the 3-D geometry of plasma-facing components (PFCs). ML classifiers are employed to create a surrogate model for HEAT generated shadow masks, predicting these shadow masks and divertor heat flux profiles based on a diverse range of equilibria and only the plasma current, safety factor(q95) at the edge, and magnetic flux angles as input parameters. The ultimate goal is to integrate the model for real-time control and future operational decisions.
使用HEAT代码和机器学习方法对SPARC托卡马克等离子体组件进行阴影掩模预测
这项工作使用机器学习(ML)来补充HEAT(热流通量工程分析工具包),通过开发3d足迹替代模型来快速准确地计算SPARC托卡马克转向器中的热负荷。重点是由等离子体面组件(pfc)的三维几何形状引起的阴影区域或磁阴影。使用ML分类器为HEAT生成的阴影掩模创建代理模型,基于各种平衡范围,仅以等离子体电流、边缘安全系数(q95)和磁通角作为输入参数来预测这些阴影掩模和分流器热流分布。最终目标是将模型集成到实时控制和未来操作决策中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信