Macroscopic quantum coherence and quantum complete synchronization in molecular optomechanical system

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jia-Xin Peng , Chengsong Zhao , P. Djorwe , Kongkui Berinyuy Emale , Zhong-Wei Yu , Muhammad Asjad
{"title":"Macroscopic quantum coherence and quantum complete synchronization in molecular optomechanical system","authors":"Jia-Xin Peng ,&nbsp;Chengsong Zhao ,&nbsp;P. Djorwe ,&nbsp;Kongkui Berinyuy Emale ,&nbsp;Zhong-Wei Yu ,&nbsp;Muhammad Asjad","doi":"10.1016/j.chaos.2025.116473","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale coherence networks are key platforms for implementing multichannel quantum information processing and quantum computation. Here, we show how to prepare macroscopic quantum coherence between the cavity field (molecular collective mode) and the molecular collective mode (molecular collective mode) in a molecular optomechanical system composed of <span><math><mi>N</mi></math></span> organic molecules. The results indicate that increasing the number of molecules can significantly improve the cavity–molecule and the molecule–molecule quantum coherences. In addition, we find that the equal weight distribution of the two molecular collective modes can establish the strongest molecule–molecule quantum coherence. Particularly, the two types of quantum coherence prepared exhibit strong robustness to bath temperature and molecular damping channel. Further, we discuss the quantum complete synchronization of the two molecular collective modes, and then explore the potential relationship between quantum synchronization and quantum coherence. Finally, a strategy is provided to detect the quantum coherence and quantum synchronization.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116473"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004862","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale coherence networks are key platforms for implementing multichannel quantum information processing and quantum computation. Here, we show how to prepare macroscopic quantum coherence between the cavity field (molecular collective mode) and the molecular collective mode (molecular collective mode) in a molecular optomechanical system composed of N organic molecules. The results indicate that increasing the number of molecules can significantly improve the cavity–molecule and the molecule–molecule quantum coherences. In addition, we find that the equal weight distribution of the two molecular collective modes can establish the strongest molecule–molecule quantum coherence. Particularly, the two types of quantum coherence prepared exhibit strong robustness to bath temperature and molecular damping channel. Further, we discuss the quantum complete synchronization of the two molecular collective modes, and then explore the potential relationship between quantum synchronization and quantum coherence. Finally, a strategy is provided to detect the quantum coherence and quantum synchronization.
分子光力学系统中的宏观量子相干和量子完全同步
大规模相干网络是实现多通道量子信息处理和量子计算的关键平台。在这里,我们展示了如何在N有机分子组成的分子光力学系统中制备腔场(分子集体模式)和分子集体模式(分子集体模式)之间的宏观量子相干性。结果表明,增加分子数可以显著提高腔-分子和分子-分子的量子相干性。此外,我们发现两种分子集体模式的等质量分布可以建立最强的分子-分子量子相干性。特别地,制备的两种类型的量子相干对镀液温度和分子阻尼通道具有很强的鲁棒性。进一步讨论了两种分子集体模式的量子完全同步,并探讨了量子同步与量子相干之间的潜在关系。最后,提出了一种检测量子相干和量子同步的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信