Alvaro Magdaleno , José María García-Terán , César Peláez-Rodríguez , Guillermo Fernández , Antolin Lorenzana
{"title":"Generating vertical ground reaction forces using a stochastic data-driven model for pedestrian walking","authors":"Alvaro Magdaleno , José María García-Terán , César Peláez-Rodríguez , Guillermo Fernández , Antolin Lorenzana","doi":"10.1016/j.jocs.2025.102602","DOIUrl":null,"url":null,"abstract":"<div><div>A novel time-domain approach to the characterization of the forces induced by a pedestrian is proposed. It focuses on the vertical component while walking, but thanks to how it is conceived, the algorithm can be easily adapted to other activities or any other force component. The work has been developed from the statistical point of view, so a stochastic data-driven model is finally obtained after the algorithm is applied to a set of experimentally measured steps. The model is composed of two mean vectors and their corresponding covariance matrices to represent the steps, as well as some more means and standard deviations to account for the step scaling and double support phase, under the assumption that the random variables follow normal distributions. Velocity and step length are also provided, so the model and the latter data enable the realistic generation of virtual gaits. Some application examples at different walking paces are shown, in which comparisons between the original steps and a set of virtual ones are performed to show the similarities between both. For reproducibility purposes, the data and the developed algorithm have been made available.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"88 ","pages":"Article 102602"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000791","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel time-domain approach to the characterization of the forces induced by a pedestrian is proposed. It focuses on the vertical component while walking, but thanks to how it is conceived, the algorithm can be easily adapted to other activities or any other force component. The work has been developed from the statistical point of view, so a stochastic data-driven model is finally obtained after the algorithm is applied to a set of experimentally measured steps. The model is composed of two mean vectors and their corresponding covariance matrices to represent the steps, as well as some more means and standard deviations to account for the step scaling and double support phase, under the assumption that the random variables follow normal distributions. Velocity and step length are also provided, so the model and the latter data enable the realistic generation of virtual gaits. Some application examples at different walking paces are shown, in which comparisons between the original steps and a set of virtual ones are performed to show the similarities between both. For reproducibility purposes, the data and the developed algorithm have been made available.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).