An update rule for multiple source variances estimation using microphone arrays

IF 3 3区 计算机科学 Q2 ACOUSTICS
Fan Zhang , Chao Pan , Jingdong Chen , Jacob Benesty
{"title":"An update rule for multiple source variances estimation using microphone arrays","authors":"Fan Zhang ,&nbsp;Chao Pan ,&nbsp;Jingdong Chen ,&nbsp;Jacob Benesty","doi":"10.1016/j.specom.2025.103245","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the problem of time-varying variance estimation in scenarios with multiple speech sources and background noise using a microphone array, which is an important issue in speech enhancement. Under the optimal principle of maximum likelihood (ML), the variance estimation under the general cases occurs no explicit formula, and all the variances require to be updated iteratively. Inspired by the fixed-point iteration (FPI) method, we derive an update rule for variance estimation by introducing a dummy term and exploiting the ML condition. Insights into the update rule is investigated and the relationship with the variance estimates under least-squares (LS) principle is presented. Finally, by simulations, we show that the resulting variance update rule is very efficient and effective, which requires only a few iterations to converge, and the estimation error is very close to the Cramér–Rao Bound (CRB).</div></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"172 ","pages":"Article 103245"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639325000603","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of time-varying variance estimation in scenarios with multiple speech sources and background noise using a microphone array, which is an important issue in speech enhancement. Under the optimal principle of maximum likelihood (ML), the variance estimation under the general cases occurs no explicit formula, and all the variances require to be updated iteratively. Inspired by the fixed-point iteration (FPI) method, we derive an update rule for variance estimation by introducing a dummy term and exploiting the ML condition. Insights into the update rule is investigated and the relationship with the variance estimates under least-squares (LS) principle is presented. Finally, by simulations, we show that the resulting variance update rule is very efficient and effective, which requires only a few iterations to converge, and the estimation error is very close to the Cramér–Rao Bound (CRB).
使用麦克风阵列进行多源方差估计的更新规则
本文研究了基于麦克风阵列的多声源和背景噪声场景下的时变方差估计问题,这是语音增强中的一个重要问题。在最大似然最优原理下,一般情况下的方差估计没有显式公式,所有方差都需要迭代更新。受不动点迭代(FPI)方法的启发,我们通过引入虚拟项和利用ML条件推导出方差估计的更新规则。对更新规则进行了深入的研究,并给出了在最小二乘原理下与方差估计的关系。最后,通过仿真表明,所得到的方差更新规则是非常高效的,只需几次迭代即可收敛,估计误差非常接近cram - rao边界(CRB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信