Jana Zimmermann, Zengxuan Fan, Matti Jänicke, Michael Fischlschweiger
{"title":"Investigation of the molecular architecture influence on the solid-liquid transition of ethylene/1-octene copolymers in butylal","authors":"Jana Zimmermann, Zengxuan Fan, Matti Jänicke, Michael Fischlschweiger","doi":"10.1016/j.fluid.2025.114457","DOIUrl":null,"url":null,"abstract":"<div><div>The molecular architecture, in terms of molecular weight and branching, linked with the semi-crystallinity of the polymer, plays a key role in solid-liquid equilibria in polyethylene-solvent systems. Lattice Cluster Theory, in combination with continuous thermodynamics, captures these molecular features and has been successfully applied in the past to predict solid-liquid equilibria of polymer solvent systems. While the solubility of linear low-density polyethylenes in chlorinated solvents has been studied in depth in the past, few investigations have addressed their solubility in less toxic and environmentally more friendly solvents, particularly in relation to the influence of molecular architecture. This study aims to fill this gap by investigating the relationship between molecular architecture of ethylene/1-octene copolymers, covering a wide range of branching levels from 3.5 to 54.6 CH/1000 C, and their solid-liquid phase transitions in butylal. By combining cross-fractionation chromatography, preparative crystallisation fractionation and Lattice Cluster Theory, the solid-liquid transitions of these material systems are elucidated and an architecture-solubility relationship is established. This approach provides detailed insights into how molecular architecture influences crystallisation behaviour, provides a basis for the design of ethylene/1-octene copolymer fractions with tailored microstructural features, and demonstrates the predictive power of Lattice Cluster Theory.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"597 ","pages":"Article 114457"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122500127X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular architecture, in terms of molecular weight and branching, linked with the semi-crystallinity of the polymer, plays a key role in solid-liquid equilibria in polyethylene-solvent systems. Lattice Cluster Theory, in combination with continuous thermodynamics, captures these molecular features and has been successfully applied in the past to predict solid-liquid equilibria of polymer solvent systems. While the solubility of linear low-density polyethylenes in chlorinated solvents has been studied in depth in the past, few investigations have addressed their solubility in less toxic and environmentally more friendly solvents, particularly in relation to the influence of molecular architecture. This study aims to fill this gap by investigating the relationship between molecular architecture of ethylene/1-octene copolymers, covering a wide range of branching levels from 3.5 to 54.6 CH/1000 C, and their solid-liquid phase transitions in butylal. By combining cross-fractionation chromatography, preparative crystallisation fractionation and Lattice Cluster Theory, the solid-liquid transitions of these material systems are elucidated and an architecture-solubility relationship is established. This approach provides detailed insights into how molecular architecture influences crystallisation behaviour, provides a basis for the design of ethylene/1-octene copolymer fractions with tailored microstructural features, and demonstrates the predictive power of Lattice Cluster Theory.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.