Tianai Yue , Rongtao Xu , Jingqian Wu , Wenjie Yang , Shide Du , Changwei Wang
{"title":"Dual prototypes contrastive learning based semi-supervised segmentation method for intelligent medical applications","authors":"Tianai Yue , Rongtao Xu , Jingqian Wu , Wenjie Yang , Shide Du , Changwei Wang","doi":"10.1016/j.engappai.2025.110905","DOIUrl":null,"url":null,"abstract":"<div><div>In medical intelligence applications, the labeling of medical data is crucial and expensive, so it becomes urgent to explore labeling-efficient ways to train applications. Semi-supervised techniques for medical image segmentation have demonstrated potential, effectively training models using scarce labeled data alongside a wealth of unlabeled data. Therefore, semi-supervised medical image segmentation is a key issue in engineering applications of medical intelligence. Consistency constraints based on prototype alignment provide an intuitively sensible way to discover valuable insights from unlabeled data that can motivate segmentation performance. In this work, we propose a Dual prototypes Contrastive Network to motivate semi-supervised medical segmentation accuracy by imposing image-level global prototype and pixel-level local prototype constraints. First, we introduce a Background-Separation Global Prototype Contrastive Learning technique that utilizes the natural mutual exclusivity of foreground and background to separate the inter-class distances and encourage the segmentation network to obtain segmentation results that are more complete and do not contain background regions. Second, we design a Cross-Consistent Local Prototype Contrastive Learning techniques to extend the perturbation consistency of the two networks to the prototype’s localized response to the feature map, thereby shaping a more stable intra-class prototype space and producing accurate and robust pixel-level predictions. Finally, we comprehensively evaluate our method on mainstream semi-supervised medical image segmentation benchmarks and settings, and experimental results show that our proposed method outperforms current state-of-the-art methods. Specifically, our method achieves a Dice Coefficient score of 91.8 on the Automatic Cardiac Diagnosis Challenge dataset using only 10% labeled data training, 1.1% ahead of the second best method. Code is available at <span><span>https://github.com/yuelily2024/DPC</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"154 ","pages":"Article 110905"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625009054","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In medical intelligence applications, the labeling of medical data is crucial and expensive, so it becomes urgent to explore labeling-efficient ways to train applications. Semi-supervised techniques for medical image segmentation have demonstrated potential, effectively training models using scarce labeled data alongside a wealth of unlabeled data. Therefore, semi-supervised medical image segmentation is a key issue in engineering applications of medical intelligence. Consistency constraints based on prototype alignment provide an intuitively sensible way to discover valuable insights from unlabeled data that can motivate segmentation performance. In this work, we propose a Dual prototypes Contrastive Network to motivate semi-supervised medical segmentation accuracy by imposing image-level global prototype and pixel-level local prototype constraints. First, we introduce a Background-Separation Global Prototype Contrastive Learning technique that utilizes the natural mutual exclusivity of foreground and background to separate the inter-class distances and encourage the segmentation network to obtain segmentation results that are more complete and do not contain background regions. Second, we design a Cross-Consistent Local Prototype Contrastive Learning techniques to extend the perturbation consistency of the two networks to the prototype’s localized response to the feature map, thereby shaping a more stable intra-class prototype space and producing accurate and robust pixel-level predictions. Finally, we comprehensively evaluate our method on mainstream semi-supervised medical image segmentation benchmarks and settings, and experimental results show that our proposed method outperforms current state-of-the-art methods. Specifically, our method achieves a Dice Coefficient score of 91.8 on the Automatic Cardiac Diagnosis Challenge dataset using only 10% labeled data training, 1.1% ahead of the second best method. Code is available at https://github.com/yuelily2024/DPC.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.