World of Forms: Deformable geometric templates for one-shot surface meshing in coronary CT angiography

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rudolf L.M. van Herten , Ioannis Lagogiannis , Jelmer M. Wolterink , Steffen Bruns , Eva R. Meulendijks , Damini Dey , Joris R. de Groot , José P. Henriques , R. Nils Planken , Simone Saitta , Ivana Išgum
{"title":"World of Forms: Deformable geometric templates for one-shot surface meshing in coronary CT angiography","authors":"Rudolf L.M. van Herten ,&nbsp;Ioannis Lagogiannis ,&nbsp;Jelmer M. Wolterink ,&nbsp;Steffen Bruns ,&nbsp;Eva R. Meulendijks ,&nbsp;Damini Dey ,&nbsp;Joris R. de Groot ,&nbsp;José P. Henriques ,&nbsp;R. Nils Planken ,&nbsp;Simone Saitta ,&nbsp;Ivana Išgum","doi":"10.1016/j.media.2025.103582","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based medical image segmentation and surface mesh generation typically involve a sequential pipeline from image to segmentation to meshes, often requiring large training datasets while making limited use of prior geometric knowledge. This may lead to topological inconsistencies and suboptimal performance in low-data regimes. To address these challenges, we propose a data-efficient deep learning method for direct 3D anatomical object surface meshing using geometric priors. Our approach employs a multi-resolution graph neural network that operates on a prior geometric template which is deformed to fit object boundaries of interest. We show how different templates may be used for the different surface meshing targets, and introduce a novel masked autoencoder pretraining strategy for 3D spherical data. The proposed method outperforms nnUNet in a one-shot setting for segmentation of the pericardium, left ventricle (LV) cavity and the LV myocardium. Similarly, the method outperforms other lumen segmentation operating on multi-planar reformatted images. Results further indicate that mesh quality is on par with or improves upon marching cubes post-processing of voxel mask predictions, while remaining flexible in the choice of mesh triangulation prior, thus paving the way for more accurate and topologically consistent 3D medical object surface meshing.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103582"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136184152500129X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based medical image segmentation and surface mesh generation typically involve a sequential pipeline from image to segmentation to meshes, often requiring large training datasets while making limited use of prior geometric knowledge. This may lead to topological inconsistencies and suboptimal performance in low-data regimes. To address these challenges, we propose a data-efficient deep learning method for direct 3D anatomical object surface meshing using geometric priors. Our approach employs a multi-resolution graph neural network that operates on a prior geometric template which is deformed to fit object boundaries of interest. We show how different templates may be used for the different surface meshing targets, and introduce a novel masked autoencoder pretraining strategy for 3D spherical data. The proposed method outperforms nnUNet in a one-shot setting for segmentation of the pericardium, left ventricle (LV) cavity and the LV myocardium. Similarly, the method outperforms other lumen segmentation operating on multi-planar reformatted images. Results further indicate that mesh quality is on par with or improves upon marching cubes post-processing of voxel mask predictions, while remaining flexible in the choice of mesh triangulation prior, thus paving the way for more accurate and topologically consistent 3D medical object surface meshing.
形式的世界:冠状动脉CT血管造影中一次表面网格的可变形几何模板
基于深度学习的医学图像分割和表面网格生成通常涉及从图像到分割再到网格的顺序管道,通常需要大型训练数据集,同时有限地使用先前的几何知识。这可能导致拓扑不一致和低数据状态下的次优性能。为了解决这些挑战,我们提出了一种数据高效的深度学习方法,用于使用几何先验的直接3D解剖物体表面网格划分。我们的方法采用了一个多分辨率的图神经网络,该网络在一个预先的几何模板上运行,该模板被变形以适应感兴趣的对象边界。我们展示了如何为不同的表面网格目标使用不同的模板,并介绍了一种新的用于三维球面数据的掩模自编码器预训练策略。该方法在心包、左心室(LV)腔和左心室心肌的一次分割设置中优于nnUNet。同样,该方法优于其他在多平面重构图像上进行的流明分割。结果进一步表明,网格质量与体素掩码预测的步进立方体后处理相当或有所改善,同时在选择网格三角化方面保持灵活性,从而为更准确和拓扑一致的3D医疗对象表面网格划分铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信