Abdullah El-Rifai, Liudmyla Klochko, Viktor Mandrolko, Sreehari Perumanath, David Lacroix, Rohit Pillai, Mykola Isaiev
{"title":"Spectral mechanisms of solid/liquid interfacial heat transfer in the presence of a meniscus","authors":"Abdullah El-Rifai, Liudmyla Klochko, Viktor Mandrolko, Sreehari Perumanath, David Lacroix, Rohit Pillai, Mykola Isaiev","doi":"10.1039/d4cp04768k","DOIUrl":null,"url":null,"abstract":"In this study, we employ molecular simulations to investigate the enhancement in thermal conductance at the solid/liquid interface in the presence of a meniscus reported previously (Klochko <em>et al.</em>, <em>Phys. Chem. Chem. Phys.</em>, 2023, <strong>25</strong>(4), 3298–3308). We vary the solid/liquid interaction strength at Lennard-Jones interfaces for both confined liquid and meniscus systems, finding that the presence of a meniscus yields an enhancement in the solid/liquid interfacial thermal conductance across all wettabilities. However, the magnitude of the enhancement is found to depend on the surface wettability, initially rising monotonously for low to moderate wettabilities, followed by a sharp rise between moderate and high wettabilities. The spectral decomposition of heat flux formalism was applied to understand the nature of this phenomenon further. By computing the in-plane and out-of-plane components of the heat fluxes within both the interfacial solid and liquid, we show that the initial monotonous rise in conductance enhancement predominantly stems from a rise in the coupling of out-of-plane vibrations within both the solid and the liquid. In contrast, the subsequent sharp rise at more wetting interfaces is linked to sharp increases in the utilization of the in-plane modes of the solid and liquid. These observations result from the interplay between the solid/liquid adhesive forces and the liquid/vapor interfacial tension. Our results can aid engineers in optimizing thermal transport at realistic interfaces, which is critical to designing effective cooling solutions for electronics, among other applications.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04768k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we employ molecular simulations to investigate the enhancement in thermal conductance at the solid/liquid interface in the presence of a meniscus reported previously (Klochko et al., Phys. Chem. Chem. Phys., 2023, 25(4), 3298–3308). We vary the solid/liquid interaction strength at Lennard-Jones interfaces for both confined liquid and meniscus systems, finding that the presence of a meniscus yields an enhancement in the solid/liquid interfacial thermal conductance across all wettabilities. However, the magnitude of the enhancement is found to depend on the surface wettability, initially rising monotonously for low to moderate wettabilities, followed by a sharp rise between moderate and high wettabilities. The spectral decomposition of heat flux formalism was applied to understand the nature of this phenomenon further. By computing the in-plane and out-of-plane components of the heat fluxes within both the interfacial solid and liquid, we show that the initial monotonous rise in conductance enhancement predominantly stems from a rise in the coupling of out-of-plane vibrations within both the solid and the liquid. In contrast, the subsequent sharp rise at more wetting interfaces is linked to sharp increases in the utilization of the in-plane modes of the solid and liquid. These observations result from the interplay between the solid/liquid adhesive forces and the liquid/vapor interfacial tension. Our results can aid engineers in optimizing thermal transport at realistic interfaces, which is critical to designing effective cooling solutions for electronics, among other applications.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.