Dynamic and thermodynamic characteristics of ocean response to super typhoon Mangkhut in the South China Sea

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Zhiyuan Wu, Zeyuan Zou, Jie Chen, Hongmei Luo, Bin Deng, Changbo Jiang, Zhao Lv, Haojian Zhang
{"title":"Dynamic and thermodynamic characteristics of ocean response to super typhoon Mangkhut in the South China Sea","authors":"Zhiyuan Wu, Zeyuan Zou, Jie Chen, Hongmei Luo, Bin Deng, Changbo Jiang, Zhao Lv, Haojian Zhang","doi":"10.3389/fmars.2025.1586377","DOIUrl":null,"url":null,"abstract":"The impact of the South China Sea (SCS) to the super typhoon Mangkhut (2018) and the air-sea interaction are evaluated through COAWST model in this study which fully coupled with the atmosphere model (WRF), the ocean model (ROMS), and the wave model (SWAN). A comparison of our modeled results with several buoys and tide stations revealed remarkable consistency, the minimum root mean square error (RMSE) for wind speed, significant wave height, and water level are 3.013 m/s, 0.641m, 0.007m. During the development and dissipation of super typhoon Mangkhut, the Coriolis force caused the typhoon wind field to exhibit a pronounced rightward deflection. The characteristics of the significant wave height field are generally similar to those of the wind field, although there is a temporal lag of several hours. Moreover, we researched on the spatiotemporal variations of sea surface temperature (SST) impact by the Mangkhut’s passage, and found that it exhibits two main characteristics: spatial asymmetry and temporal lag. The spatial asymmetry is primarily governed by typhoon-generated wind fields, while the temporal lag is mainly controlled by upwelling and vertical mixing processes during the typhoon’s passage, with Ekman pumping playing a pivotal role in these dynamics. This study mainly concentrates on investigating the dynamic and thermodynamic responses of the ocean during extreme weather conditions by using COAWST model.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1586377","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of the South China Sea (SCS) to the super typhoon Mangkhut (2018) and the air-sea interaction are evaluated through COAWST model in this study which fully coupled with the atmosphere model (WRF), the ocean model (ROMS), and the wave model (SWAN). A comparison of our modeled results with several buoys and tide stations revealed remarkable consistency, the minimum root mean square error (RMSE) for wind speed, significant wave height, and water level are 3.013 m/s, 0.641m, 0.007m. During the development and dissipation of super typhoon Mangkhut, the Coriolis force caused the typhoon wind field to exhibit a pronounced rightward deflection. The characteristics of the significant wave height field are generally similar to those of the wind field, although there is a temporal lag of several hours. Moreover, we researched on the spatiotemporal variations of sea surface temperature (SST) impact by the Mangkhut’s passage, and found that it exhibits two main characteristics: spatial asymmetry and temporal lag. The spatial asymmetry is primarily governed by typhoon-generated wind fields, while the temporal lag is mainly controlled by upwelling and vertical mixing processes during the typhoon’s passage, with Ekman pumping playing a pivotal role in these dynamics. This study mainly concentrates on investigating the dynamic and thermodynamic responses of the ocean during extreme weather conditions by using COAWST model.
南海超强台风“山竹”对海洋响应的动力和热力学特征
本研究采用COAWST模式,充分耦合大气模式(WRF)、海洋模式(ROMS)和波浪模式(SWAN),评估南海对超强台风山竹(2018)的影响及海气相互作用。与多个浮标和潮汐站的模拟结果比较,风速、有效波高和水位的最小均方根误差(RMSE)分别为3.013 m/s、0.641m、0.007m。在超强台风山竹的发展和消散过程中,科里奥利力使台风风场呈现明显的右偏。有效波高场的特征大体上与风场相似,但存在几个小时的时间滞后。此外,研究了山竹通道对海表温度的时空影响,发现其主要表现为空间不对称性和时间滞后性。空间不对称主要由台风产生的风场控制,而时间滞后主要由台风通过过程中的上升流和垂直混合过程控制,其中Ekman抽运在这些动力学中起着关键作用。本研究主要利用COAWST模式研究极端天气条件下海洋的动力和热力学响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信