{"title":"Click Chemistry-Assisted Rejuvenation of Aging T Cells Sensitizes Aged Mice to Tumor Immunotherapy","authors":"Xue-Feng Bai, Jun-Chi Ma, Cheng Zhang, Zhu Chen, Jinlian He, Si-Xue Cheng, Xian-Zheng Zhang","doi":"10.1021/jacs.5c05312","DOIUrl":null,"url":null,"abstract":"Enormous resources have been devoted to address the suboptimal response of tumor patients to immunotherapy. However, a crucial yet often overlooked factor in these effects is the strong correlation between the occurrence and development of tumors and the immune dysfunction associated with aging. Our study aims to rejuvenate aging T cells within tumor-draining lymph nodes (TdLNs) by using targeted delivery of rapamycin, a macrolide capable of mitigating aging-related decline in immune function, thereby enhancing the antitumor efficacy of immunotherapy in aged mice. The targeted delivery system relies on a bioorthogonal reaction that harnesses the click chemistry between the azide (N<sub>3</sub>) groups artificially introduced onto TdLNs and the dibenzocyclooctyne (DBCO) groups attached to the rapamycin-loaded micelles administered intradermally. Experimental data demonstrate that this approach has effectively restored the functionality of impaired CD8<sup>+</sup> T cells in aged mice, thereby enhancing the antitumor response to immune checkpoint blockade (ICB) therapy to levels comparable to those in young mice. This study presents a promising strategy to combat the resistance to immunotherapeutic approaches commonly encountered among elderly tumor patients.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"32 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05312","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enormous resources have been devoted to address the suboptimal response of tumor patients to immunotherapy. However, a crucial yet often overlooked factor in these effects is the strong correlation between the occurrence and development of tumors and the immune dysfunction associated with aging. Our study aims to rejuvenate aging T cells within tumor-draining lymph nodes (TdLNs) by using targeted delivery of rapamycin, a macrolide capable of mitigating aging-related decline in immune function, thereby enhancing the antitumor efficacy of immunotherapy in aged mice. The targeted delivery system relies on a bioorthogonal reaction that harnesses the click chemistry between the azide (N3) groups artificially introduced onto TdLNs and the dibenzocyclooctyne (DBCO) groups attached to the rapamycin-loaded micelles administered intradermally. Experimental data demonstrate that this approach has effectively restored the functionality of impaired CD8+ T cells in aged mice, thereby enhancing the antitumor response to immune checkpoint blockade (ICB) therapy to levels comparable to those in young mice. This study presents a promising strategy to combat the resistance to immunotherapeutic approaches commonly encountered among elderly tumor patients.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.