{"title":"A Highly Efficient Molecular Iron(II) Photocatalyst for Concurrent CO2 Reduction and Organic Synthesis","authors":"Yan-Nan Jing, Hai-Xu Wang, Cheng Wang, Chen Ye, Chen-Ho Tung, Li-Zhu Wu","doi":"10.1021/jacs.5c01698","DOIUrl":null,"url":null,"abstract":"Molecular catalysts used for photocatalytic reduction of CO<sub>2</sub> heavily rely on photosensitizers to harvest light and then achieve photoinduced electron transfer to the catalytic center. However, a single earth-abundant molecular metal photocatalyst to independently execute CO<sub>2</sub> reduction remains a huge challenge. Herein, we report that a polypyridyl iron(II) molecular photocatalyst <b>1</b>, FePAbipyBn, exhibits outstanding activity for CO<sub>2</sub> reduction in the presence of 1,3-diethyl-2-phenyl-2,3-dihydro-1<i>H</i>-benzo[d]imidazole (TON 3558 for CO production and selectivity >99%). More strikingly, molecular photocatalyst <b>1</b> takes advantage of unique photoredox properties to concurrently facilitate 2e<sup>–</sup>/2H<sup>+</sup> enamine oxidation and CO<sub>2</sub> reduction, resulting in value-added products of indoles and CO. This is an inaugural instance of a photoredox reaction for CO<sub>2</sub> reduction and organic synthesis using a molecular photocatalyst.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular catalysts used for photocatalytic reduction of CO2 heavily rely on photosensitizers to harvest light and then achieve photoinduced electron transfer to the catalytic center. However, a single earth-abundant molecular metal photocatalyst to independently execute CO2 reduction remains a huge challenge. Herein, we report that a polypyridyl iron(II) molecular photocatalyst 1, FePAbipyBn, exhibits outstanding activity for CO2 reduction in the presence of 1,3-diethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (TON 3558 for CO production and selectivity >99%). More strikingly, molecular photocatalyst 1 takes advantage of unique photoredox properties to concurrently facilitate 2e–/2H+ enamine oxidation and CO2 reduction, resulting in value-added products of indoles and CO. This is an inaugural instance of a photoredox reaction for CO2 reduction and organic synthesis using a molecular photocatalyst.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.