Shaocheng Shen, Mehrdad Shiri, Paramasivam Mahalingam, Chaolong Tang, Tyler Bills, Alexander J. Bushnell, Tanya A. Balandin, Leopoldo Mejía, Haixin Zhang, Bingqian Xu, Ignacio Franco, Jason D. Azoulay, Kun Wang
{"title":"Long-Range Resonant Charge Transport through Open-Shell Donor–Acceptor Macromolecules","authors":"Shaocheng Shen, Mehrdad Shiri, Paramasivam Mahalingam, Chaolong Tang, Tyler Bills, Alexander J. Bushnell, Tanya A. Balandin, Leopoldo Mejía, Haixin Zhang, Bingqian Xu, Ignacio Franco, Jason D. Azoulay, Kun Wang","doi":"10.1021/jacs.4c18150","DOIUrl":null,"url":null,"abstract":"A grand challenge in molecular electronics is the development of molecular materials that can facilitate efficient long-range charge transport. Research spanning more than two decades has been fueled by the prospects of creating a new generation of miniaturized electronic technologies based on molecules whose synthetic tunability offers tailored electronic properties and functions unattainable with conventional electronic materials. However, current design paradigms produce molecules that exhibit off-resonant transport under low bias, which limits the conductance of molecular materials to unsatisfactorily low levels─several orders of magnitude below the conductance quantum 1 <i>G</i><sub>0</sub>─and often results in an exponential decay in conductance with length. Here, we demonstrate a chemically robust, air-stable, and highly tunable molecular wire platform comprised of open-shell donor–acceptor macromolecules that exhibit remarkably high conductance close to 1 <i>G</i><sub>0</sub> over a length surpassing 20 nm under low bias, with no discernible decay with length. Single-molecule transport measurements and <i>ab initio</i> calculations show that the ultralong-range resonant transport arises from extended π-conjugation, a narrow bandgap, and diradical character, which synergistically enables excellent alignment of frontier molecular orbitals with the electrode Fermi energy. The implementation of this long-sought-after transport regime within molecular materials offers new opportunities for the integration of manifold properties within emerging nanoelectronic technologies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"29 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A grand challenge in molecular electronics is the development of molecular materials that can facilitate efficient long-range charge transport. Research spanning more than two decades has been fueled by the prospects of creating a new generation of miniaturized electronic technologies based on molecules whose synthetic tunability offers tailored electronic properties and functions unattainable with conventional electronic materials. However, current design paradigms produce molecules that exhibit off-resonant transport under low bias, which limits the conductance of molecular materials to unsatisfactorily low levels─several orders of magnitude below the conductance quantum 1 G0─and often results in an exponential decay in conductance with length. Here, we demonstrate a chemically robust, air-stable, and highly tunable molecular wire platform comprised of open-shell donor–acceptor macromolecules that exhibit remarkably high conductance close to 1 G0 over a length surpassing 20 nm under low bias, with no discernible decay with length. Single-molecule transport measurements and ab initio calculations show that the ultralong-range resonant transport arises from extended π-conjugation, a narrow bandgap, and diradical character, which synergistically enables excellent alignment of frontier molecular orbitals with the electrode Fermi energy. The implementation of this long-sought-after transport regime within molecular materials offers new opportunities for the integration of manifold properties within emerging nanoelectronic technologies.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.