{"title":"Deep learning HRNet FCN for blood vessel identification in laparoscopic pancreatic surgery","authors":"Jile Shi, Ruohan Cui, Zhihong Wang, Qi Yan, Lu Ping, Hu Zhou, Junyi Gao, Chihua Fang, Xianlin Han, Surong Hua, Wenming Wu","doi":"10.1038/s41746-025-01663-6","DOIUrl":null,"url":null,"abstract":"<p>Laparoscopic pancreatic surgery remains highly challenging due to the complexity of the pancreas and surrounding vascular structures, with risk of injuring critical blood vessels such as the Superior Mesenteric Vein (SMV)-Portal Vein (PV) axis and splenic vein. Here, we evaluated the High Resolution Network (HRNet)-Full Convolutional Network (FCN) model for its ability to accurately identify vascular contours and improve surgical safety. Using 12,694 images from 126 laparoscopic distal pancreatectomy (LDP) videos and 35,986 images from 138 Whipple procedure videos, the model demonstrated robust performance, achieving a mean Dice coefficient of 0.754, a recall of 85.00%, and a precision of 91.10%. By combining datasets from LDP and Whipple procedures, the model showed strong generalization across different surgical contexts and achieved real-time processing speeds of 11 frames per second during surgery process. These findings highlight HRNet-FCN’s potential to recognize anatomical landmarks, enhance surgical precision, reduce complications, and improve laparoscopic pancreatic outcomes.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"34 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01663-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Laparoscopic pancreatic surgery remains highly challenging due to the complexity of the pancreas and surrounding vascular structures, with risk of injuring critical blood vessels such as the Superior Mesenteric Vein (SMV)-Portal Vein (PV) axis and splenic vein. Here, we evaluated the High Resolution Network (HRNet)-Full Convolutional Network (FCN) model for its ability to accurately identify vascular contours and improve surgical safety. Using 12,694 images from 126 laparoscopic distal pancreatectomy (LDP) videos and 35,986 images from 138 Whipple procedure videos, the model demonstrated robust performance, achieving a mean Dice coefficient of 0.754, a recall of 85.00%, and a precision of 91.10%. By combining datasets from LDP and Whipple procedures, the model showed strong generalization across different surgical contexts and achieved real-time processing speeds of 11 frames per second during surgery process. These findings highlight HRNet-FCN’s potential to recognize anatomical landmarks, enhance surgical precision, reduce complications, and improve laparoscopic pancreatic outcomes.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.