Impact of missing electronic fetal monitoring signals on perinatal asphyxia: a multicohort analysis

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Debjyoti Karmakar, Lochana Mendis, Emerson Keenan, Marimuthu Palaniswami, Roxanne Hastie, Enes Makalic, Fiona Brownfoot
{"title":"Impact of missing electronic fetal monitoring signals on perinatal asphyxia: a multicohort analysis","authors":"Debjyoti Karmakar, Lochana Mendis, Emerson Keenan, Marimuthu Palaniswami, Roxanne Hastie, Enes Makalic, Fiona Brownfoot","doi":"10.1038/s41746-025-01665-4","DOIUrl":null,"url":null,"abstract":"<p>Cardiotocography (CTG) is essential for monitoring high-risk pregnancies, yet perinatal asphyxia prediction accuracy remains limited to 50–55%. Regions of artifacts (missing valid signals)-including signal processing aberrations-possibly contribute to this limitation, highlighted by 40% of FDA reports on intrapartum stillbirths. This cohort study applied causal inference to two digitized CTG databases, analyzing 36,792 labor episodes (&gt;36 weeks) at a tertiary Australian hospital (2010–2021) and externally validating on a Czech dataset (<i>n</i> = 552).High rates of missing valid signals (&gt;30% fetal heart rate signal dropout or &gt;1% maternal-fetal heart rate coincidence) was independently associated with asphyxia (aOR 1.47, 95% CI 1.19–1.81); dropout &gt;30% showing stronger link (aOR 1.58, 95% CI 1.13–2.20 Australian dataset; aOR 2.30, 95% CI 1.08–4.91 Czech dataset). Risk of asphyxia increased with higher dropout (&gt;37.45%, aOR 2.21 Australian dataset; &gt;34.01%, aOR 4.08 Czech dataset). Integrating measures of missing valid signals into fetal monitoring algorithms may improve decision-making and neonatal outcomes.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"11 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01665-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiotocography (CTG) is essential for monitoring high-risk pregnancies, yet perinatal asphyxia prediction accuracy remains limited to 50–55%. Regions of artifacts (missing valid signals)-including signal processing aberrations-possibly contribute to this limitation, highlighted by 40% of FDA reports on intrapartum stillbirths. This cohort study applied causal inference to two digitized CTG databases, analyzing 36,792 labor episodes (>36 weeks) at a tertiary Australian hospital (2010–2021) and externally validating on a Czech dataset (n = 552).High rates of missing valid signals (>30% fetal heart rate signal dropout or >1% maternal-fetal heart rate coincidence) was independently associated with asphyxia (aOR 1.47, 95% CI 1.19–1.81); dropout >30% showing stronger link (aOR 1.58, 95% CI 1.13–2.20 Australian dataset; aOR 2.30, 95% CI 1.08–4.91 Czech dataset). Risk of asphyxia increased with higher dropout (>37.45%, aOR 2.21 Australian dataset; >34.01%, aOR 4.08 Czech dataset). Integrating measures of missing valid signals into fetal monitoring algorithms may improve decision-making and neonatal outcomes.

Abstract Image

缺失胎儿电子监测信号对围产期窒息的影响:一项多队列分析
心脏造影(CTG)是监测高危妊娠必不可少的,但围产期窒息预测的准确性仍然限制在50-55%。伪影区域(缺失有效信号)——包括信号处理畸变——可能是造成这种限制的原因,FDA关于产时死产的报告中有40%强调了这一点。本队列研究对两个数字化CTG数据库应用因果推理,分析了澳大利亚一家三级医院(2010-2021年)36,792次分娩(>;36周),并在捷克数据集(n = 552)上进行了外部验证。有效信号缺失率高(30%胎儿心率信号缺失或1%母胎心率重合)与窒息独立相关(aOR 1.47, 95% CI 1.19-1.81);dropout >;30%显示更强的关联(aOR 1.58, 95% CI 1.13-2.20);aOR 2.30, 95% CI 1.08-4.91捷克数据集)。随着辍学率的升高,窒息风险增加(>37.45%, aOR 2.21);>34.01%, aOR 4.08捷克数据集)。将缺失的有效信号整合到胎儿监测算法中可以改善决策和新生儿结局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信