Convergence analysis of three semidiscrete numerical schemes for nonlocal geometric flows including perimeter terms

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Wei Jiang, Chunmei Su, Ganghui Zhang
{"title":"Convergence analysis of three semidiscrete numerical schemes for nonlocal geometric flows including perimeter terms","authors":"Wei Jiang, Chunmei Su, Ganghui Zhang","doi":"10.1093/imanum/draf015","DOIUrl":null,"url":null,"abstract":"We present and analyze three distinct semidiscrete schemes for solving nonlocal geometric flows incorporating perimeter terms. These schemes are based on the finite difference method, the finite element method and the finite element method with a specific tangential motion. We offer rigorous proofs of quadratic convergence under $H^{1}$-norm for the first scheme and linear convergence under $H^{1}$-norm for the latter two schemes. All error estimates rely on the observation that the error of the nonlocal term can be controlled by the error of the local term. Furthermore, we explore the relationship between the convergence under $L^\\infty $-norm and manifold distance. Extensive numerical experiments are conducted to verify the convergence analysis, and demonstrate the accuracy of our schemes under various norms for different types of nonlocal flows.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"52 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf015","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present and analyze three distinct semidiscrete schemes for solving nonlocal geometric flows incorporating perimeter terms. These schemes are based on the finite difference method, the finite element method and the finite element method with a specific tangential motion. We offer rigorous proofs of quadratic convergence under $H^{1}$-norm for the first scheme and linear convergence under $H^{1}$-norm for the latter two schemes. All error estimates rely on the observation that the error of the nonlocal term can be controlled by the error of the local term. Furthermore, we explore the relationship between the convergence under $L^\infty $-norm and manifold distance. Extensive numerical experiments are conducted to verify the convergence analysis, and demonstrate the accuracy of our schemes under various norms for different types of nonlocal flows.
含周长项的非局部几何流动的三种半离散数值格式的收敛性分析
我们提出并分析了三种不同的半离散格式来求解包含周长项的非局部几何流。这些方案是基于有限差分法、有限元法和特定切向运动的有限元法。给出了第一种方案在$H^{1}$ -范数下的二次收敛性和后两种方案在$H^{1}$ -范数下的线性收敛性的严格证明。所有的误差估计都依赖于非局部项的误差可以由局部项的误差控制这一观察结果。进一步探讨了$L^\infty $ -范数下的收敛性与流形距离之间的关系。大量的数值实验验证了收敛性分析,并证明了我们的格式在不同类型的非局部流动的各种规范下的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信