{"title":"Convergence analysis of three semidiscrete numerical schemes for nonlocal geometric flows including perimeter terms","authors":"Wei Jiang, Chunmei Su, Ganghui Zhang","doi":"10.1093/imanum/draf015","DOIUrl":null,"url":null,"abstract":"We present and analyze three distinct semidiscrete schemes for solving nonlocal geometric flows incorporating perimeter terms. These schemes are based on the finite difference method, the finite element method and the finite element method with a specific tangential motion. We offer rigorous proofs of quadratic convergence under $H^{1}$-norm for the first scheme and linear convergence under $H^{1}$-norm for the latter two schemes. All error estimates rely on the observation that the error of the nonlocal term can be controlled by the error of the local term. Furthermore, we explore the relationship between the convergence under $L^\\infty $-norm and manifold distance. Extensive numerical experiments are conducted to verify the convergence analysis, and demonstrate the accuracy of our schemes under various norms for different types of nonlocal flows.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"52 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf015","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present and analyze three distinct semidiscrete schemes for solving nonlocal geometric flows incorporating perimeter terms. These schemes are based on the finite difference method, the finite element method and the finite element method with a specific tangential motion. We offer rigorous proofs of quadratic convergence under $H^{1}$-norm for the first scheme and linear convergence under $H^{1}$-norm for the latter two schemes. All error estimates rely on the observation that the error of the nonlocal term can be controlled by the error of the local term. Furthermore, we explore the relationship between the convergence under $L^\infty $-norm and manifold distance. Extensive numerical experiments are conducted to verify the convergence analysis, and demonstrate the accuracy of our schemes under various norms for different types of nonlocal flows.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.