Ioana Banicescu, Trisha Chakraborty, Seth Gilbert, Maxwell Young
{"title":"A Survey on Adversarial Contention Resolution","authors":"Ioana Banicescu, Trisha Chakraborty, Seth Gilbert, Maxwell Young","doi":"10.1145/3733594","DOIUrl":null,"url":null,"abstract":"Contention resolution addresses the challenge of coordinating access by multiple processes to a shared resource such as memory, disk storage, or a communication channel. Originally spurred by challenges in database systems and bus networks, contention resolution has endured as an important abstraction for resource sharing, despite decades of technological change. Here, we survey the literature on resolving worst-case contention, where the number of processes and the time at which each process may start seeking access to the resource is dictated by an adversary. We also highlight the evolution of contention resolution, where new concerns—such as security, quality of service, and energy efficiency—are motivated by modern systems. These efforts have yielded insights into the limits of randomized and deterministic approaches, as well as the impact of different model assumptions such as global clock synchronization, knowledge of the number of processors, feedback from access attempts, and attacks on the availability of the shared resource.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"35 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3733594","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Contention resolution addresses the challenge of coordinating access by multiple processes to a shared resource such as memory, disk storage, or a communication channel. Originally spurred by challenges in database systems and bus networks, contention resolution has endured as an important abstraction for resource sharing, despite decades of technological change. Here, we survey the literature on resolving worst-case contention, where the number of processes and the time at which each process may start seeking access to the resource is dictated by an adversary. We also highlight the evolution of contention resolution, where new concerns—such as security, quality of service, and energy efficiency—are motivated by modern systems. These efforts have yielded insights into the limits of randomized and deterministic approaches, as well as the impact of different model assumptions such as global clock synchronization, knowledge of the number of processors, feedback from access attempts, and attacks on the availability of the shared resource.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.