Jae Min Cho,Khoa Vu,Seul-Ki Park,Enbo Zhu,Yan-Ruide Li,Peng Zhao,Tomohiro Yokota,Lili Yang,Rong Lu,Yang Kevin Xiang,Ying H Shen,Mark W Chapleau,Tzung K Hsiai
{"title":"Habitual Exercise Modulates Neuroimmune Interaction to Mitigate Aortic Stiffness.","authors":"Jae Min Cho,Khoa Vu,Seul-Ki Park,Enbo Zhu,Yan-Ruide Li,Peng Zhao,Tomohiro Yokota,Lili Yang,Rong Lu,Yang Kevin Xiang,Ying H Shen,Mark W Chapleau,Tzung K Hsiai","doi":"10.1161/circresaha.124.325656","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nExercise augments hemodynamic shear to activate mechano-sensitive molecular transducers in the vascular endothelium. Recently, the central nervous system has been reported to mediate neuroimmune interaction in the aortic adventitia (AA). Whether exercise modulates the sympathetic nerve interaction with the immune cells to mitigate aortic stiffness remains unknown.\r\n\r\nMETHODS AND RESULTS\r\nFour weeks of Ang II (angiotensin II) infusion to C57BL/6 mice increased neural activation to increase the expression of TH (tyrosine hydroxylase) for sympathetic nerve axons and norepinephrine levels along with the colocalization of synapsin and β2-AR (β2-adrenergic receptor)-positive macrophages in the AA. This Ang II-mediated sympathetic nerve and macrophage interaction activated fibroblasts to increase vascular fibrosis and arterial pulse wave velocity. Sympathetic denervation with celiac ganglionectomy or 6-hydroxydopamine treatment abrogated Ang II-mediated TH+, AA thickness, and pulse wave velocity. Single-cell RNA sequencing analyses of the AA revealed that Ang II increased the circulating monocyte-derived macrophages (Ccr2+CD80) but reduced the resident macrophages (Lyve1+CD163). Gene ontology analysis of differentially expressed genes unveiled that voluntary wheel running mitigated Ang II-mediated increase in Ccr2+CD80 macrophages, cytokine-mediated signaling pathways in macrophages, and extracellular matrix deposition in fibroblasts. Macrophage depletion with Ki20227 (colony stimulating factor 1 receptor inhibitor) reduced Ang II-mediated synapsin+ macrophages. Using the Ccr2 knock-in (Ccr2gfp)/knock-out (Ccr2KO) mice, we observed that Ang II-mediated increases in Ccr2+ macrophages were expressed in Ccr2gfp mice but were absent in Ccr2KO mice. Also, Ang II-induced increases in synapsin expression, neighboring Ccr2+ cells, AA thickness, and pulse wave velocity were reduced in Ccr2KO mice. Both Ki20227 and Ccr2KO reduced the Ang II-mediated increase in TH levels. Furthermore, voluntary wheel running-mediated reduction in vascular fibrosis and aortic stiffness were mitigated by a β2-AR agonist, terbutaline, indicating β2-AR in neuroimmune modulation.\r\n\r\nCONCLUSIONS\r\nExercise mitigates Ang II-mediated sympathetic axon interaction with the circulating monocyte-derived macrophages in the AA to attenuate vascular fibrosis and aortic stiffness.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"15 1","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.124.325656","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Exercise augments hemodynamic shear to activate mechano-sensitive molecular transducers in the vascular endothelium. Recently, the central nervous system has been reported to mediate neuroimmune interaction in the aortic adventitia (AA). Whether exercise modulates the sympathetic nerve interaction with the immune cells to mitigate aortic stiffness remains unknown.
METHODS AND RESULTS
Four weeks of Ang II (angiotensin II) infusion to C57BL/6 mice increased neural activation to increase the expression of TH (tyrosine hydroxylase) for sympathetic nerve axons and norepinephrine levels along with the colocalization of synapsin and β2-AR (β2-adrenergic receptor)-positive macrophages in the AA. This Ang II-mediated sympathetic nerve and macrophage interaction activated fibroblasts to increase vascular fibrosis and arterial pulse wave velocity. Sympathetic denervation with celiac ganglionectomy or 6-hydroxydopamine treatment abrogated Ang II-mediated TH+, AA thickness, and pulse wave velocity. Single-cell RNA sequencing analyses of the AA revealed that Ang II increased the circulating monocyte-derived macrophages (Ccr2+CD80) but reduced the resident macrophages (Lyve1+CD163). Gene ontology analysis of differentially expressed genes unveiled that voluntary wheel running mitigated Ang II-mediated increase in Ccr2+CD80 macrophages, cytokine-mediated signaling pathways in macrophages, and extracellular matrix deposition in fibroblasts. Macrophage depletion with Ki20227 (colony stimulating factor 1 receptor inhibitor) reduced Ang II-mediated synapsin+ macrophages. Using the Ccr2 knock-in (Ccr2gfp)/knock-out (Ccr2KO) mice, we observed that Ang II-mediated increases in Ccr2+ macrophages were expressed in Ccr2gfp mice but were absent in Ccr2KO mice. Also, Ang II-induced increases in synapsin expression, neighboring Ccr2+ cells, AA thickness, and pulse wave velocity were reduced in Ccr2KO mice. Both Ki20227 and Ccr2KO reduced the Ang II-mediated increase in TH levels. Furthermore, voluntary wheel running-mediated reduction in vascular fibrosis and aortic stiffness were mitigated by a β2-AR agonist, terbutaline, indicating β2-AR in neuroimmune modulation.
CONCLUSIONS
Exercise mitigates Ang II-mediated sympathetic axon interaction with the circulating monocyte-derived macrophages in the AA to attenuate vascular fibrosis and aortic stiffness.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.