Plastic strain related tensile-compressive asymmetric yield behavior of pulse current assisted AZ31B magnesium alloy forming

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Yu Yan, Yuxuan Wang, Haibo Wang, Gence Fan
{"title":"Plastic strain related tensile-compressive asymmetric yield behavior of pulse current assisted AZ31B magnesium alloy forming","authors":"Yu Yan,&nbsp;Yuxuan Wang,&nbsp;Haibo Wang,&nbsp;Gence Fan","doi":"10.1007/s12289-025-01909-4","DOIUrl":null,"url":null,"abstract":"<div><p>To effectively predict the deformation behavior of AZ31B magnesium alloy (Mg alloy) in plastic forming assisted by pulse current, the influences of different pulse currents’ frequencies on the flow stress of Mg alloy were studied. The Voce and Hockett-Sherby constitutive models were modified to include the influence of frequencies, and the parameters of the constitutive models were calibrated based on the experimental data. The Cazacu 2004 yield criterion was improved to describe the yield behavior under the action of pulse current, in which the tensile-compressive asymmetry keeps changing with the increase of plastic strain. The three-point bending tests of AZ31B Mg alloy assisted by different frequency pulse currents were carried out. The improved constitutive model and yield criterion were embedded in ABAQUS using user material subroutine VUMAT for the corresponding three-point bending simulation. It is found that the improved constitutive model and yield criterion considering the current frequencies and tensile-compressive asymmetry can obviously improve the simulation accuracy.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01909-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively predict the deformation behavior of AZ31B magnesium alloy (Mg alloy) in plastic forming assisted by pulse current, the influences of different pulse currents’ frequencies on the flow stress of Mg alloy were studied. The Voce and Hockett-Sherby constitutive models were modified to include the influence of frequencies, and the parameters of the constitutive models were calibrated based on the experimental data. The Cazacu 2004 yield criterion was improved to describe the yield behavior under the action of pulse current, in which the tensile-compressive asymmetry keeps changing with the increase of plastic strain. The three-point bending tests of AZ31B Mg alloy assisted by different frequency pulse currents were carried out. The improved constitutive model and yield criterion were embedded in ABAQUS using user material subroutine VUMAT for the corresponding three-point bending simulation. It is found that the improved constitutive model and yield criterion considering the current frequencies and tensile-compressive asymmetry can obviously improve the simulation accuracy.

Graphical Abstract

脉冲电流辅助AZ31B镁合金成形的塑性应变相关拉压不对称屈服行为
为了有效预测AZ31B镁合金(Mg合金)在脉冲电流辅助塑性成形过程中的变形行为,研究了不同脉冲电流频率对镁合金流变应力的影响。修正了Voce和Hockett-Sherby本构模型,纳入了频率的影响,并根据实验数据对本构模型的参数进行了标定。对Cazacu 2004屈服准则进行了改进,描述了脉冲电流作用下的屈服行为,其中拉伸-压缩不对称性随着塑性应变的增加而不断变化。对AZ31B镁合金进行了不同频率脉冲电流辅助下的三点弯曲试验。利用用户材料子程序VUMAT将改进的本构模型和屈服准则嵌入ABAQUS中,进行相应的三点弯曲仿真。研究发现,考虑电流频率和拉压不对称的改进本构模型和屈服准则能明显提高模拟精度。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信