On a nonlinear partial differential equation with a \(p\left( .\right) \)-triharmonic operator

Q2 Mathematics
Ismail Aydın, Khaled Kefi
{"title":"On a nonlinear partial differential equation with a \\(p\\left( .\\right) \\)-triharmonic operator","authors":"Ismail Aydın,&nbsp;Khaled Kefi","doi":"10.1007/s11565-025-00593-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the following <span>\\(p\\left( .\\right) \\)</span>-triharmonic problem </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{cc} \\Delta _{p(.)}^{3}u+a(x)\\left| u\\right| ^{p(x)-2}u=\\lambda (V_{1}(x)\\left| u\\right| ^{q(x)-2}u-V_{2}(x)\\left| u\\right| ^{\\alpha (x)-2}u), &amp; \\text {in }\\Omega \\\\ \\left| \\nabla \\Delta u\\right| ^{p(x)-2}\\frac{\\partial u}{\\partial \\upsilon }+\\beta (x)\\left| u\\right| ^{p(x)-2}u=0, &amp; \\text {on } \\partial \\Omega ,\\end{array} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\)</span> is a smooth bounded domain in <span>\\( \\mathbb {R} ^N\\)</span>, and <span>\\(\\lambda &gt;0\\)</span> is a parameter. Using some variational methods and compact embedding results for variable exponent third-order Sobolev space, we obtain the existence of weak solutions for the problem.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-025-00593-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00593-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following \(p\left( .\right) \)-triharmonic problem

$$\begin{aligned} \left\{ \begin{array}{cc} \Delta _{p(.)}^{3}u+a(x)\left| u\right| ^{p(x)-2}u=\lambda (V_{1}(x)\left| u\right| ^{q(x)-2}u-V_{2}(x)\left| u\right| ^{\alpha (x)-2}u), & \text {in }\Omega \\ \left| \nabla \Delta u\right| ^{p(x)-2}\frac{\partial u}{\partial \upsilon }+\beta (x)\left| u\right| ^{p(x)-2}u=0, & \text {on } \partial \Omega ,\end{array} \right. \end{aligned}$$

where \(\Omega \) is a smooth bounded domain in \( \mathbb {R} ^N\), and \(\lambda >0\) is a parameter. Using some variational methods and compact embedding results for variable exponent third-order Sobolev space, we obtain the existence of weak solutions for the problem.

具有\(p\left( .\right) \) -三调和算子的非线性偏微分方程
我们研究以下\(p\left( .\right) \) -三谐问题$$\begin{aligned} \left\{ \begin{array}{cc} \Delta _{p(.)}^{3}u+a(x)\left| u\right| ^{p(x)-2}u=\lambda (V_{1}(x)\left| u\right| ^{q(x)-2}u-V_{2}(x)\left| u\right| ^{\alpha (x)-2}u), & \text {in }\Omega \\ \left| \nabla \Delta u\right| ^{p(x)-2}\frac{\partial u}{\partial \upsilon }+\beta (x)\left| u\right| ^{p(x)-2}u=0, & \text {on } \partial \Omega ,\end{array} \right. \end{aligned}$$,其中\(\Omega \)是\( \mathbb {R} ^N\)中的光滑有界域,\(\lambda >0\)是参数。利用变指数三阶Sobolev空间的变分方法和紧嵌入结果,得到了该问题弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信