Community-Based Memetic Algorithm for Influence Maximization in Large-Scale Networks

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mithun Roy;Indrajit Pan
{"title":"Community-Based Memetic Algorithm for Influence Maximization in Large-Scale Networks","authors":"Mithun Roy;Indrajit Pan","doi":"10.1109/ACCESS.2025.3563308","DOIUrl":null,"url":null,"abstract":"Effective information diffusion across large-scale network is key for influence maximization. Recent research has shown a significant surge in interest in modeling, performance estimation, and seed identification across various networked systems. Moreover, a simulation of useful interactions among many significant groups within networks was developed to simulate real-world marketing and spreading information more accurately. A good diffusion model identifies the minimum number of effective seeds capable of achieving maximum diffusion effects across the network. Limited focus has been placed on measuring the strength of seeds in competitive spreading situations. There is a research gap in determining effective strategy for this purpose. This study proposes a memetic algorithm based on a community for large-scale social networks. The proposed algorithm optimizes the influence spread by identifying the most influential nodes among the communities, depending on their inter- or intra-community propagation dynamics. This algorithm combines the concept of genetic algorithm with a reachability-based local search method to accelerate the convergence process. This approach offers a robust method for maximizing the influence of network structure and interactions. An experimental evaluation on real-world social network datasets shows the performance superiority of this community-based memetic algorithm (CBMA-IM) over existing algorithms.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"72754-72768"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10973070/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective information diffusion across large-scale network is key for influence maximization. Recent research has shown a significant surge in interest in modeling, performance estimation, and seed identification across various networked systems. Moreover, a simulation of useful interactions among many significant groups within networks was developed to simulate real-world marketing and spreading information more accurately. A good diffusion model identifies the minimum number of effective seeds capable of achieving maximum diffusion effects across the network. Limited focus has been placed on measuring the strength of seeds in competitive spreading situations. There is a research gap in determining effective strategy for this purpose. This study proposes a memetic algorithm based on a community for large-scale social networks. The proposed algorithm optimizes the influence spread by identifying the most influential nodes among the communities, depending on their inter- or intra-community propagation dynamics. This algorithm combines the concept of genetic algorithm with a reachability-based local search method to accelerate the convergence process. This approach offers a robust method for maximizing the influence of network structure and interactions. An experimental evaluation on real-world social network datasets shows the performance superiority of this community-based memetic algorithm (CBMA-IM) over existing algorithms.
基于社区的大型网络影响最大化模因算法
在大规模网络中有效传播信息是实现影响力最大化的关键。最近的研究表明,对各种网络系统的建模、性能评估和种子识别的兴趣显著增加。此外,网络中许多重要群体之间有用互动的模拟被开发出来,以更准确地模拟现实世界的营销和传播信息。一个好的扩散模型确定了能够在整个网络中实现最大扩散效应的有效种子的最小数量。在竞争性传播情况下,对衡量种子强度的关注有限。在确定为此目的的有效策略方面存在研究空白。本文提出了一种基于社区的模因算法。该算法根据社区间或社区内的传播动态,识别出社区中最具影响力的节点,从而优化影响传播。该算法将遗传算法的概念与基于可达性的局部搜索方法相结合,加快了收敛过程。该方法为最大化网络结构和相互作用的影响提供了一种鲁棒方法。在现实社会网络数据集上的实验评估表明,基于社区的模因算法(CBMA-IM)在性能上优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信