Intent-Based Multi-Cloud Storage Management Powered by a Fine-Tuned Large Language Model

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingya Zheng;Gaofeng Tao;Shuxin Qin;Dan Wang;Zhongjun Ma
{"title":"Intent-Based Multi-Cloud Storage Management Powered by a Fine-Tuned Large Language Model","authors":"Jingya Zheng;Gaofeng Tao;Shuxin Qin;Dan Wang;Zhongjun Ma","doi":"10.1109/ACCESS.2025.3563200","DOIUrl":null,"url":null,"abstract":"Storage resources are essential in heterogeneous multi-cloud environments. In response to the growing demand for efficient storage resource management (SRM) in these environments, this paper proposes an intent-based storage management (IBSM) system powered by a fine-tuned large language model (LLM). To overcome the limitations of existing methods, the IBSM system focuses on enhancing the controllability, completeness, and reliability of SRM in multi-cloud environments. Specifically, the IBSM system employs a dual-phase joint intent classification algorithm, which leverages a fine-tuned LLM to accurately identify user intents across diverse knowledge backgrounds. Additionally, the system constructs a collaborative intent decomposition method, which guarantees the integrity of intents. Furthermore, the system integrates an automated intent deployment mechanism that supports error recovery through checkpoints. Experimental results show that the system achieves a whole end-to-end (E2E) lifecycle for managing user intents. The E2E time is reduced by at least half compared to the manual approach, with an average of 50.14% dedicated to interactive tasks. Performance metrics for intent classification, including accuracy, precision, and recall, all exceed 90%. Moreover, the recovery time is reduced by an average of 30.6%. Therefore, the system provides a valuable solution for the autonomous management of multi-cloud resources.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"72736-72753"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10975014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10975014/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Storage resources are essential in heterogeneous multi-cloud environments. In response to the growing demand for efficient storage resource management (SRM) in these environments, this paper proposes an intent-based storage management (IBSM) system powered by a fine-tuned large language model (LLM). To overcome the limitations of existing methods, the IBSM system focuses on enhancing the controllability, completeness, and reliability of SRM in multi-cloud environments. Specifically, the IBSM system employs a dual-phase joint intent classification algorithm, which leverages a fine-tuned LLM to accurately identify user intents across diverse knowledge backgrounds. Additionally, the system constructs a collaborative intent decomposition method, which guarantees the integrity of intents. Furthermore, the system integrates an automated intent deployment mechanism that supports error recovery through checkpoints. Experimental results show that the system achieves a whole end-to-end (E2E) lifecycle for managing user intents. The E2E time is reduced by at least half compared to the manual approach, with an average of 50.14% dedicated to interactive tasks. Performance metrics for intent classification, including accuracy, precision, and recall, all exceed 90%. Moreover, the recovery time is reduced by an average of 30.6%. Therefore, the system provides a valuable solution for the autonomous management of multi-cloud resources.
基于意图的多云存储管理,由微调的大型语言模型提供支持
在异构多云环境中,存储资源是必不可少的。针对这些环境中对高效存储资源管理(SRM)日益增长的需求,本文提出了一种基于意图的存储管理(IBSM)系统,该系统由一个微调的大型语言模型(LLM)提供支持。为了克服现有方法的局限性,IBSM系统着重于增强多云环境下SRM的可控性、完整性和可靠性。具体来说,IBSM系统采用了一种双阶段联合意图分类算法,该算法利用经过微调的LLM来准确识别不同知识背景的用户意图。此外,系统还构建了协同意图分解方法,保证了意图的完整性。此外,系统集成了一个自动意图部署机制,支持通过检查点进行错误恢复。实验结果表明,该系统实现了一个完整的端到端(E2E)生命周期来管理用户意图。与手动方式相比,端到端时间至少减少了一半,平均有50.14%的时间用于交互任务。意图分类的性能指标,包括准确性、精密度和召回率,都超过了90%。恢复时间平均缩短了30.6%。为多云资源的自主管理提供了有价值的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信