Low-Overhead Compression-Aware Channel Filtering for Hyperspectral Image Compression

Wei Zhang;Jiayao Xu;Yueru Chen;Dingquan Li;Wen Gao
{"title":"Low-Overhead Compression-Aware Channel Filtering for Hyperspectral Image Compression","authors":"Wei Zhang;Jiayao Xu;Yueru Chen;Dingquan Li;Wen Gao","doi":"10.1109/LGRS.2025.3562933","DOIUrl":null,"url":null,"abstract":"Both traditional and learning-based hyperspectral image (HSI) compression methods suffer from significant quality loss at high compression ratios. To address this, we propose a low-overhead, compression-aware channel filtering method. The encoder derives channel filters via least squares regression (LSR) between lossy compressed and original images. The bitstream, containing the compressed image and filters, is sent to the decoder, where the filters enhance image quality. This simple, compression-aware approach is compatible with any existing framework, enhancing quality while introducing only a negligible increase in bitstream size and decoding time, thereby achieving low overhead. Experimental results show consistent rate-distortion gains, reducing compression rates by 10.51% to 39.81% on the GF-5 dataset with minimal decoding and storage overhead.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10972113/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Both traditional and learning-based hyperspectral image (HSI) compression methods suffer from significant quality loss at high compression ratios. To address this, we propose a low-overhead, compression-aware channel filtering method. The encoder derives channel filters via least squares regression (LSR) between lossy compressed and original images. The bitstream, containing the compressed image and filters, is sent to the decoder, where the filters enhance image quality. This simple, compression-aware approach is compatible with any existing framework, enhancing quality while introducing only a negligible increase in bitstream size and decoding time, thereby achieving low overhead. Experimental results show consistent rate-distortion gains, reducing compression rates by 10.51% to 39.81% on the GF-5 dataset with minimal decoding and storage overhead.
用于高光谱图像压缩的低开销压缩感知信道滤波
在高压缩比下,传统的高光谱图像压缩方法和基于学习的高光谱图像压缩方法都存在明显的质量损失。为了解决这个问题,我们提出了一种低开销、压缩感知的信道滤波方法。编码器通过最小二乘回归(LSR)在有损压缩图像和原始图像之间导出信道滤波器。包含压缩图像和滤波器的比特流被发送到解码器,在那里滤波器增强图像质量。这种简单的、压缩感知的方法与任何现有的框架兼容,提高了质量,同时只引入了微不足道的比特流大小和解码时间的增加,从而实现了低开销。实验结果显示了一致的率失真增益,在最小的解码和存储开销下,GF-5数据集的压缩率降低了10.51%至39.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信