CaPaT: Cross-Aware Paired-Affine Transformation for Multimodal Data Fusion Network

Jinping Wang;Hao Chen;Xiaofei Zhang;Weiwei Song
{"title":"CaPaT: Cross-Aware Paired-Affine Transformation for Multimodal Data Fusion Network","authors":"Jinping Wang;Hao Chen;Xiaofei Zhang;Weiwei Song","doi":"10.1109/LGRS.2025.3560931","DOIUrl":null,"url":null,"abstract":"This letter proposes a cross-aware paired-affine transformation (CaPaT) network for multimodal data fusion tasks. Unlike existing networks that employ weight-sharing or indirect interaction strategies, the CaPaT introduces a direct feature interaction paradigm that significantly improves the transfer efficiency of feature fusion while reducing the number of model parameters. Specifically, this letter, respectively, splits multimodal data along the channel domain. It synthesizes specific group channels and opposite residual channels as data pairs to generate refined features, achieving direct interaction among multimodal features. Next, a scaling attention module is conducted on the refined feature pair for confidence map generation. Then, this letter multiplies confidence maps by their corresponding feature pairs, determining a more reasonable and significant margin feature representation. Finally, a classifier is conducted on the transformation features to output the final class labels. Experimental results demonstrate that the CaPaT achieves superior classification performance with fewer parameters than state-of-the-art methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10973085/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a cross-aware paired-affine transformation (CaPaT) network for multimodal data fusion tasks. Unlike existing networks that employ weight-sharing or indirect interaction strategies, the CaPaT introduces a direct feature interaction paradigm that significantly improves the transfer efficiency of feature fusion while reducing the number of model parameters. Specifically, this letter, respectively, splits multimodal data along the channel domain. It synthesizes specific group channels and opposite residual channels as data pairs to generate refined features, achieving direct interaction among multimodal features. Next, a scaling attention module is conducted on the refined feature pair for confidence map generation. Then, this letter multiplies confidence maps by their corresponding feature pairs, determining a more reasonable and significant margin feature representation. Finally, a classifier is conducted on the transformation features to output the final class labels. Experimental results demonstrate that the CaPaT achieves superior classification performance with fewer parameters than state-of-the-art methods.
多模态数据融合网络的交叉感知对仿射变换
本文提出了一种用于多模态数据融合任务的交叉感知对仿射变换(CaPaT)网络。与现有网络采用权重共享或间接交互策略不同,CaPaT引入了直接特征交互范式,在减少模型参数数量的同时显著提高了特征融合的传递效率。具体来说,这封信分别沿着通道域拆分多模态数据。它将特定的群体通道和相反的残差通道合成为数据对,生成精细化的特征,实现多模态特征之间的直接交互。然后,对改进后的特征对进行缩放关注模块,生成置信图。然后,这封信将置信度图乘以相应的特征对,确定更合理和更重要的边缘特征表示。最后,对变换特征进行分类,输出最终的类标签。实验结果表明,与现有的分类方法相比,该方法在参数较少的情况下取得了更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信