Lin Su , Xujiang Chao , Jun Luo, Lei Zhao, Yi Zhou, Lewen Yang, Lehua Qi
{"title":"A novel suppressing evaporation method for enhancing micro-complex magnesium alloy parts additive manufacturing","authors":"Lin Su , Xujiang Chao , Jun Luo, Lei Zhao, Yi Zhou, Lewen Yang, Lehua Qi","doi":"10.1016/j.ijmachtools.2025.104281","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for micro-complex and customizable magnesium (Mg) alloy structures presents significant challenges for additive manufacturing (AM), particularly in controlling porosity and achieving high-dimensional accuracy. These challenges arise from bubble entrapment and explosive events caused by intense Mg evaporation. This study, for the first time, elucidates the fundamental mechanism underlying these defects, identifying spontaneous bubble nucleation and subsequent explosions within the melt pool as the root cause. In metal droplet-based AM (MDBM), experiments demonstrate that larger bubbles destabilize droplets and disrupt deposition trajectories due to intensified energy release, ultimately degrading print quality. To address this issue, a bubble nucleation and growth model, independent of specific Mg alloy AM methods, was developed. Based on this model, a novel strategy was proposed to mitigate Mg evaporation-induced defects. By identifying a critical bubble nucleation temperature, it was established that operating below this threshold completely suppresses bubble nucleation, thereby preventing associated defects. For conditions exceeding this temperature, the bubble growth model enables precise regulation of bubble size through process parameter optimization, effectively minimizing defects and enhancing structural integrity. As a result, the fabricated structures exhibit high dimensional precision and superior mechanical performance, characterized by pore-free microstructures, minimal dimensional deviation, and enhanced mechanical properties. This study introduces a parameter-driven method for suppressing Mg evaporation-induced defects across various Mg alloy AM technologies, with potential applicability to other highly evaporative metal AM processes. Moreover, it represents the first successful fabrication of micro-complex structures using highly evaporative metals, expanding the material selection for MDBM.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"208 ","pages":"Article 104281"},"PeriodicalIF":14.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000367","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for micro-complex and customizable magnesium (Mg) alloy structures presents significant challenges for additive manufacturing (AM), particularly in controlling porosity and achieving high-dimensional accuracy. These challenges arise from bubble entrapment and explosive events caused by intense Mg evaporation. This study, for the first time, elucidates the fundamental mechanism underlying these defects, identifying spontaneous bubble nucleation and subsequent explosions within the melt pool as the root cause. In metal droplet-based AM (MDBM), experiments demonstrate that larger bubbles destabilize droplets and disrupt deposition trajectories due to intensified energy release, ultimately degrading print quality. To address this issue, a bubble nucleation and growth model, independent of specific Mg alloy AM methods, was developed. Based on this model, a novel strategy was proposed to mitigate Mg evaporation-induced defects. By identifying a critical bubble nucleation temperature, it was established that operating below this threshold completely suppresses bubble nucleation, thereby preventing associated defects. For conditions exceeding this temperature, the bubble growth model enables precise regulation of bubble size through process parameter optimization, effectively minimizing defects and enhancing structural integrity. As a result, the fabricated structures exhibit high dimensional precision and superior mechanical performance, characterized by pore-free microstructures, minimal dimensional deviation, and enhanced mechanical properties. This study introduces a parameter-driven method for suppressing Mg evaporation-induced defects across various Mg alloy AM technologies, with potential applicability to other highly evaporative metal AM processes. Moreover, it represents the first successful fabrication of micro-complex structures using highly evaporative metals, expanding the material selection for MDBM.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).