{"title":"Abnormal lipid metabolism and inflammatory response induced by aluminum led to the cognitive decline in mice","authors":"Rong Feng , Zhongyao Chen , Liang Chen , Wei Wei , Jiafeng Wen , Jingyu Zheng","doi":"10.1016/j.neuro.2025.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>As a chronic, low-toxicity metal, the effect of aluminum on human body has been paid more and more attention; however, the exact mechanism of action remains unclear. In this study, we studied the effects of aluminum on oxidative stress, inflammation, and mild cognitive impairment in mice, and analyzed changes in fecal metabolites to elucidate the potential mechanisms underlying these interactions. After 120 days of aluminum feeding, behavioral tests revealed that mice in the high-dose aluminum group exhibited cognitive decline. Regarding oxidative stress indices, MDA level increased, while GSH-PX activity, GSH content and CAT activity decreased significantly in aluminum treatment group. MAO activity increased and TC content decreased significantly. Pathological analysis of tissue sections showed that there was inflammation in brain tissue of high dose group. Pro-inflammatory factors TNF-α and IL-1β in brain tissue were significantly increased. Four metabolites (arachidic acid, linoleic acid squalene and <em>P</em>-cymene) involved in lipid metabolic pathways and inflammation varied significantly in the feces of each group. Therefore, aluminum-induced abnormal lipid metabolism pathway and inflammatory response may be an important cause of the cognitive decline.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"108 ","pages":"Pages 281-294"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X25000476","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a chronic, low-toxicity metal, the effect of aluminum on human body has been paid more and more attention; however, the exact mechanism of action remains unclear. In this study, we studied the effects of aluminum on oxidative stress, inflammation, and mild cognitive impairment in mice, and analyzed changes in fecal metabolites to elucidate the potential mechanisms underlying these interactions. After 120 days of aluminum feeding, behavioral tests revealed that mice in the high-dose aluminum group exhibited cognitive decline. Regarding oxidative stress indices, MDA level increased, while GSH-PX activity, GSH content and CAT activity decreased significantly in aluminum treatment group. MAO activity increased and TC content decreased significantly. Pathological analysis of tissue sections showed that there was inflammation in brain tissue of high dose group. Pro-inflammatory factors TNF-α and IL-1β in brain tissue were significantly increased. Four metabolites (arachidic acid, linoleic acid squalene and P-cymene) involved in lipid metabolic pathways and inflammation varied significantly in the feces of each group. Therefore, aluminum-induced abnormal lipid metabolism pathway and inflammatory response may be an important cause of the cognitive decline.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.