Revisiting hydrogen trapping in Mg32(Al, Zn)49 approximant crystal: Influence of chemical disorder

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kazuyuki Shimizu , Masatake Yamaguchi , Satoshi Akamaru , Katsuhiko Nishimura , Rion Abe , Taisuke T. Sasaki , Yafei Wang , Hiroyuki Toda
{"title":"Revisiting hydrogen trapping in Mg32(Al, Zn)49 approximant crystal: Influence of chemical disorder","authors":"Kazuyuki Shimizu ,&nbsp;Masatake Yamaguchi ,&nbsp;Satoshi Akamaru ,&nbsp;Katsuhiko Nishimura ,&nbsp;Rion Abe ,&nbsp;Taisuke T. Sasaki ,&nbsp;Yafei Wang ,&nbsp;Hiroyuki Toda","doi":"10.1016/j.scriptamat.2025.116730","DOIUrl":null,"url":null,"abstract":"<div><div>The approximant crystal Mg<sub>32</sub>(Al, Zn)<sub>49</sub> (T-phase in Al-Zn-Mg alloys) holds the potential for enhancing both strength and hydrogen embrittlement resistance in aluminum alloys when present as nano-precipitates. Our previous computational exploration indicated strong hydrogen trapping but neglected the inherent chemical disorder of this approximant crystal. This study revisits hydrogen trapping in Mg<sub>32</sub>(Al, Zn)<sub>49</sub>, directly including chemical disorder via special quasirandom structures. Density functional theory calculations reveal that, while chemical disorder introduces variations in trapping energies, the overall trend of strong trapping persists. Tetrahedral sites coordinated by Mg atoms exhibit particularly strong trapping, with smaller tetrahedral volumes correlating with stronger trapping due to enhanced Mg-H interactions. Multiple hydrogen occupation of these sites is also calculated, resulting in high hydrogen densities. Experimental validation using thermal desorption spectroscopy on a bulk Mg<sub>32</sub>(Al, Zn)<sub>49</sub> sample confirms hydrogen trapping, reinforcing the potential of this phase for designing advanced, hydrogen-resistant aluminum alloys.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"265 ","pages":"Article 116730"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001939","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The approximant crystal Mg32(Al, Zn)49 (T-phase in Al-Zn-Mg alloys) holds the potential for enhancing both strength and hydrogen embrittlement resistance in aluminum alloys when present as nano-precipitates. Our previous computational exploration indicated strong hydrogen trapping but neglected the inherent chemical disorder of this approximant crystal. This study revisits hydrogen trapping in Mg32(Al, Zn)49, directly including chemical disorder via special quasirandom structures. Density functional theory calculations reveal that, while chemical disorder introduces variations in trapping energies, the overall trend of strong trapping persists. Tetrahedral sites coordinated by Mg atoms exhibit particularly strong trapping, with smaller tetrahedral volumes correlating with stronger trapping due to enhanced Mg-H interactions. Multiple hydrogen occupation of these sites is also calculated, resulting in high hydrogen densities. Experimental validation using thermal desorption spectroscopy on a bulk Mg32(Al, Zn)49 sample confirms hydrogen trapping, reinforcing the potential of this phase for designing advanced, hydrogen-resistant aluminum alloys.

Abstract Image

再论Mg32(Al, Zn)49近似晶体中的氢俘获:化学无序的影响
近似晶体Mg32(Al, Zn)49 (Al -Zn- mg合金中的t相)以纳米析出相的形式存在时,具有提高铝合金强度和抗氢脆性能的潜力。我们以前的计算探索表明了强的氢俘获,但忽略了这种近似晶体固有的化学无序性。本研究重新审视了Mg32(Al, Zn)49中的氢捕获,直接包括通过特殊的准随机结构产生的化学紊乱。密度泛函理论计算表明,虽然化学无序引入了捕获能的变化,但强捕获的总体趋势仍然存在。由Mg原子配位的四面体位表现出特别强的捕获,由于Mg- h相互作用增强,较小的四面体体积与更强的捕获相关。还计算了这些位置的多个氢占用,从而产生高氢密度。利用热解吸光谱对Mg32(Al, Zn)49样品进行的实验验证证实了氢捕获,增强了该阶段设计先进的抗氢铝合金的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信