Pursuing sparsity and homogeneity for multi-source high-dimensional current status data

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Xin Ye , Yanyan Liu
{"title":"Pursuing sparsity and homogeneity for multi-source high-dimensional current status data","authors":"Xin Ye ,&nbsp;Yanyan Liu","doi":"10.1016/j.jspi.2025.106293","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, current status data with high-dimensional predictors are prevalent in observational studies. However, for a single study, the high dimensionality and the presence of censoring pose substantial challenges to statistical analysis with limited sample size. Although integrative analysis has been widely regarded as an effective strategy to improve the estimation, the source-level heterogeneity has to be carefully addressed. In this paper, we propose an integrative analysis method for multi-source high-dimensional current status data, which can simultaneously identify the homogeneity/heterogeneity structure and select important variables. We prove that the proposed approach attains consistency in estimation, sparsity recovery, and the pursuit of homogeneity. Extensive simulation studies have been carried out to assess the finite sample performance of the proposed method. A real data analysis of multi-source ovarian cancer recurrence studies further demonstrates its practical applicability.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"239 ","pages":"Article 106293"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582500031X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, current status data with high-dimensional predictors are prevalent in observational studies. However, for a single study, the high dimensionality and the presence of censoring pose substantial challenges to statistical analysis with limited sample size. Although integrative analysis has been widely regarded as an effective strategy to improve the estimation, the source-level heterogeneity has to be carefully addressed. In this paper, we propose an integrative analysis method for multi-source high-dimensional current status data, which can simultaneously identify the homogeneity/heterogeneity structure and select important variables. We prove that the proposed approach attains consistency in estimation, sparsity recovery, and the pursuit of homogeneity. Extensive simulation studies have been carried out to assess the finite sample performance of the proposed method. A real data analysis of multi-source ovarian cancer recurrence studies further demonstrates its practical applicability.
追求多源高维现状数据的稀疏性和同质性
目前,具有高维预测因子的现状数据在观察性研究中普遍存在。然而,对于单一的研究,高维度和审查的存在对有限样本量的统计分析构成了实质性的挑战。虽然综合分析已被广泛认为是改善估计的有效策略,但必须仔细处理源级异质性。本文提出了一种多源高维电流状态数据的综合分析方法,该方法可以同时识别同质/异质结构并选择重要变量。我们证明了该方法在估计、稀疏恢复和追求同质性方面达到了一致性。已经进行了大量的仿真研究来评估所提出的方法的有限样本性能。通过对卵巢癌多源复发研究的真实数据分析,进一步证明了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信