DeepValve: The first automatic detection pipeline for the mitral valve in Cardiac Magnetic Resonance imaging

IF 7 2区 医学 Q1 BIOLOGY
Giulia Monopoli , Daniel Haas , Ashay Singh , Eivind Westrum Aabel , Margareth Ribe , Anna Isotta Castrini , Nina Eide Hasselberg , Cecilie Bugge , Christian Five , Kristina Haugaa , Nickolas Forsch , Vajira Thambawita , Gabriel Balaban , Mary M. Maleckar
{"title":"DeepValve: The first automatic detection pipeline for the mitral valve in Cardiac Magnetic Resonance imaging","authors":"Giulia Monopoli ,&nbsp;Daniel Haas ,&nbsp;Ashay Singh ,&nbsp;Eivind Westrum Aabel ,&nbsp;Margareth Ribe ,&nbsp;Anna Isotta Castrini ,&nbsp;Nina Eide Hasselberg ,&nbsp;Cecilie Bugge ,&nbsp;Christian Five ,&nbsp;Kristina Haugaa ,&nbsp;Nickolas Forsch ,&nbsp;Vajira Thambawita ,&nbsp;Gabriel Balaban ,&nbsp;Mary M. Maleckar","doi":"10.1016/j.compbiomed.2025.110211","DOIUrl":null,"url":null,"abstract":"<div><div>Mitral valve (MV) assessment is key to diagnosing valvular disease and to addressing its serious downstream complications. Cardiac magnetic resonance (CMR) has become an essential diagnostic tool in MV disease, offering detailed views of the valve structure and function, and overcoming the limitations of other imaging modalities. Automated detection of the MV leaflets in CMR could enable rapid and precise assessments that enhance diagnostic accuracy. To address this gap, we introduce DeepValve, the first deep learning (DL) pipeline for MV detection using CMR. Within DeepValve, we tested three valve detection models: a keypoint-regression model (UNET-REG), a segmentation model (UNET-SEG) and a hybrid model based on keypoint detection (DSNT-REG). We also propose metrics for evaluating the quality of MV detection, including Procrustes-based metrics (UNET-REG, DSNT-REG) and customized Dice-based metrics (UNET-SEG). We developed and tested our models on a clinical dataset comprising 120 CMR images from patients with confirmed MV disease (mitral valve prolapse and mitral annular disjunction). Our results show that DSNT-REG delivered the best regression performance, accurately locating landmark locations. UNET-SEG achieved satisfactory Dice and customized Dice scores, also accurately predicting valve location and topology. Overall, our work represents a critical first step towards automated MV assessment using DL in CMR and paving the way for improved clinical assessment in MV disease.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110211"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005621","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitral valve (MV) assessment is key to diagnosing valvular disease and to addressing its serious downstream complications. Cardiac magnetic resonance (CMR) has become an essential diagnostic tool in MV disease, offering detailed views of the valve structure and function, and overcoming the limitations of other imaging modalities. Automated detection of the MV leaflets in CMR could enable rapid and precise assessments that enhance diagnostic accuracy. To address this gap, we introduce DeepValve, the first deep learning (DL) pipeline for MV detection using CMR. Within DeepValve, we tested three valve detection models: a keypoint-regression model (UNET-REG), a segmentation model (UNET-SEG) and a hybrid model based on keypoint detection (DSNT-REG). We also propose metrics for evaluating the quality of MV detection, including Procrustes-based metrics (UNET-REG, DSNT-REG) and customized Dice-based metrics (UNET-SEG). We developed and tested our models on a clinical dataset comprising 120 CMR images from patients with confirmed MV disease (mitral valve prolapse and mitral annular disjunction). Our results show that DSNT-REG delivered the best regression performance, accurately locating landmark locations. UNET-SEG achieved satisfactory Dice and customized Dice scores, also accurately predicting valve location and topology. Overall, our work represents a critical first step towards automated MV assessment using DL in CMR and paving the way for improved clinical assessment in MV disease.

Abstract Image

DeepValve:心脏磁共振成像中第一个自动检测二尖瓣的管道
二尖瓣(MV)评估是诊断瓣膜疾病和解决其严重下游并发症的关键。心脏磁共振(CMR)已经成为一种重要的诊断工具,可以提供瓣膜结构和功能的详细视图,并克服了其他成像方式的局限性。CMR中MV小叶的自动检测可以实现快速和精确的评估,提高诊断的准确性。为了解决这一差距,我们引入了DeepValve,这是第一个使用CMR进行MV检测的深度学习(DL)管道。在DeepValve中,我们测试了三种阀门检测模型:关键点回归模型(UNET-REG)、分割模型(UNET-SEG)和基于关键点检测的混合模型(DSNT-REG)。我们还提出了评估MV检测质量的指标,包括基于procrustes的指标(UNET-REG, DSNT-REG)和定制的基于dice的指标(UNET-SEG)。我们在一个临床数据集上开发并测试了我们的模型,该数据集包括来自确诊的二尖瓣疾病(二尖瓣脱垂和二尖瓣环分离)患者的120张CMR图像。我们的研究结果表明,DSNT-REG提供了最好的回归性能,准确地定位地标位置。UNET-SEG获得了令人满意的Dice和定制的Dice分数,还准确预测了阀门位置和拓扑结构。总的来说,我们的工作代表了在CMR中使用DL进行自动MV评估的关键的第一步,并为改进MV疾病的临床评估铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信