Cancer type and survival prediction based on transcriptomic feature map

IF 7 2区 医学 Q1 BIOLOGY
Ming Yan , Zirou Dong , Zhaopo Zhu , Chengliang Qiao , Meizhi Wang , Zhixia Teng , Yongqiang Xing , Guojun Liu , Guoqing Liu , Lu Cai , Hu Meng
{"title":"Cancer type and survival prediction based on transcriptomic feature map","authors":"Ming Yan ,&nbsp;Zirou Dong ,&nbsp;Zhaopo Zhu ,&nbsp;Chengliang Qiao ,&nbsp;Meizhi Wang ,&nbsp;Zhixia Teng ,&nbsp;Yongqiang Xing ,&nbsp;Guojun Liu ,&nbsp;Guoqing Liu ,&nbsp;Lu Cai ,&nbsp;Hu Meng","doi":"10.1016/j.compbiomed.2025.110267","DOIUrl":null,"url":null,"abstract":"<div><div>This study achieved cancer type and survival time prediction by transforming transcriptomic features into feature maps and employing deep learning models. Using transcriptomic data from 27 cancer types and survival data from 10 types in the TCGA database, a pan-cancer transcriptomic feature map was constructed through data cleaning, feature extraction, and visualization. Using Inception network and gated convolutional modules yielded a pan-cancer classification accuracy of 91.8 %. Additionally, by extracting 31 differential genes from different cancer feature maps, an interaction network diagram was drawn, identifying two key genes, ANXA5 and ACTB. These genes are potential biomarkers related to cancer progression, angiogenesis, metastasis, and treatment resistance. Survival prediction analysis on 10 cancer types, combined with feature maps and data amplification, cancer survival prediction accuracy reached from 0.75 to 0.91. This transcriptomic feature map provides a novel approach for cancer omics analysis, to facilitate personalized treatments and reflecting individual differences.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110267"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525006183","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study achieved cancer type and survival time prediction by transforming transcriptomic features into feature maps and employing deep learning models. Using transcriptomic data from 27 cancer types and survival data from 10 types in the TCGA database, a pan-cancer transcriptomic feature map was constructed through data cleaning, feature extraction, and visualization. Using Inception network and gated convolutional modules yielded a pan-cancer classification accuracy of 91.8 %. Additionally, by extracting 31 differential genes from different cancer feature maps, an interaction network diagram was drawn, identifying two key genes, ANXA5 and ACTB. These genes are potential biomarkers related to cancer progression, angiogenesis, metastasis, and treatment resistance. Survival prediction analysis on 10 cancer types, combined with feature maps and data amplification, cancer survival prediction accuracy reached from 0.75 to 0.91. This transcriptomic feature map provides a novel approach for cancer omics analysis, to facilitate personalized treatments and reflecting individual differences.
基于转录组特征图谱的癌症类型和生存预测
本研究通过将转录组特征转化为特征图并采用深度学习模型,实现了癌症类型和生存时间的预测。利用TCGA数据库中27种癌症类型的转录组数据和10种癌症类型的生存数据,通过数据清洗、特征提取和可视化构建泛癌症转录组特征图谱。使用Inception网络和门控卷积模块,泛癌症分类准确率达到91.8%。此外,通过从不同的癌症特征图谱中提取31个差异基因,绘制了相互作用网络图,确定了两个关键基因,ANXA5和ACTB。这些基因是与癌症进展、血管生成、转移和治疗耐药性相关的潜在生物标志物。对10种癌症类型进行生存预测分析,结合特征图和数据放大,癌症生存预测准确率达到0.75 ~ 0.91。这种转录组特征图谱为癌症组学分析提供了一种新的方法,有助于个性化治疗和反映个体差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信