Ming Yan , Zirou Dong , Zhaopo Zhu , Chengliang Qiao , Meizhi Wang , Zhixia Teng , Yongqiang Xing , Guojun Liu , Guoqing Liu , Lu Cai , Hu Meng
{"title":"Cancer type and survival prediction based on transcriptomic feature map","authors":"Ming Yan , Zirou Dong , Zhaopo Zhu , Chengliang Qiao , Meizhi Wang , Zhixia Teng , Yongqiang Xing , Guojun Liu , Guoqing Liu , Lu Cai , Hu Meng","doi":"10.1016/j.compbiomed.2025.110267","DOIUrl":null,"url":null,"abstract":"<div><div>This study achieved cancer type and survival time prediction by transforming transcriptomic features into feature maps and employing deep learning models. Using transcriptomic data from 27 cancer types and survival data from 10 types in the TCGA database, a pan-cancer transcriptomic feature map was constructed through data cleaning, feature extraction, and visualization. Using Inception network and gated convolutional modules yielded a pan-cancer classification accuracy of 91.8 %. Additionally, by extracting 31 differential genes from different cancer feature maps, an interaction network diagram was drawn, identifying two key genes, ANXA5 and ACTB. These genes are potential biomarkers related to cancer progression, angiogenesis, metastasis, and treatment resistance. Survival prediction analysis on 10 cancer types, combined with feature maps and data amplification, cancer survival prediction accuracy reached from 0.75 to 0.91. This transcriptomic feature map provides a novel approach for cancer omics analysis, to facilitate personalized treatments and reflecting individual differences.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110267"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525006183","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study achieved cancer type and survival time prediction by transforming transcriptomic features into feature maps and employing deep learning models. Using transcriptomic data from 27 cancer types and survival data from 10 types in the TCGA database, a pan-cancer transcriptomic feature map was constructed through data cleaning, feature extraction, and visualization. Using Inception network and gated convolutional modules yielded a pan-cancer classification accuracy of 91.8 %. Additionally, by extracting 31 differential genes from different cancer feature maps, an interaction network diagram was drawn, identifying two key genes, ANXA5 and ACTB. These genes are potential biomarkers related to cancer progression, angiogenesis, metastasis, and treatment resistance. Survival prediction analysis on 10 cancer types, combined with feature maps and data amplification, cancer survival prediction accuracy reached from 0.75 to 0.91. This transcriptomic feature map provides a novel approach for cancer omics analysis, to facilitate personalized treatments and reflecting individual differences.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.