{"title":"Tailoring and enhancing thermal conductivity in germanene nanotubes: A superior alternative to carbon nanotubes using external fields","authors":"Somayeh Behzad","doi":"10.1016/j.physe.2025.116278","DOIUrl":null,"url":null,"abstract":"<div><div>This work examines the thermoelectric behavior of Germanene nanotubes (GeNTs) relative to Carbon nanotubes (CNTs), focusing on the influence of external factors, such as chemical potential and applied fields, on their thermal and electronic behavior. Through the application of the tight-binding model and Kubo formula, thermal conductivity, magnetic susceptibility and thermoelectric figure of merit are systematically analyzed. Findings reveal that GeNTs exhibit notable advantages in both thermal conductivity and magnetic susceptibility, particularly under the influence of external fields. Furthermore, the response of GeNTs to electric and magnetic fields is closely related to variations in nanotube radius and chemical potential which enhances their thermoelectric performance over a wider temperature range. These findings highlight the promise of GeNTs as favorable materials for thermoelectric applications in environments that require significant thermal and electrical performance.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"172 ","pages":"Article 116278"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work examines the thermoelectric behavior of Germanene nanotubes (GeNTs) relative to Carbon nanotubes (CNTs), focusing on the influence of external factors, such as chemical potential and applied fields, on their thermal and electronic behavior. Through the application of the tight-binding model and Kubo formula, thermal conductivity, magnetic susceptibility and thermoelectric figure of merit are systematically analyzed. Findings reveal that GeNTs exhibit notable advantages in both thermal conductivity and magnetic susceptibility, particularly under the influence of external fields. Furthermore, the response of GeNTs to electric and magnetic fields is closely related to variations in nanotube radius and chemical potential which enhances their thermoelectric performance over a wider temperature range. These findings highlight the promise of GeNTs as favorable materials for thermoelectric applications in environments that require significant thermal and electrical performance.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures