SynMSE: A multimodal similarity evaluator for complex distribution discrepancy in unsupervised deformable multimodal medical image registration

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingke Zhu , Boyun Zheng , Bing Xiong , Yuxin Zhang , Ming Cui , Deyu Sun , Jing Cai , Yaoqin Xie , Wenjian Qin
{"title":"SynMSE: A multimodal similarity evaluator for complex distribution discrepancy in unsupervised deformable multimodal medical image registration","authors":"Jingke Zhu ,&nbsp;Boyun Zheng ,&nbsp;Bing Xiong ,&nbsp;Yuxin Zhang ,&nbsp;Ming Cui ,&nbsp;Deyu Sun ,&nbsp;Jing Cai ,&nbsp;Yaoqin Xie ,&nbsp;Wenjian Qin","doi":"10.1016/j.media.2025.103620","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised deformable multimodal medical image registration often confronts complex scenarios, which include intermodality domain gaps, multi-organ anatomical heterogeneity, and physiological motion variability. These factors introduce substantial grayscale distribution discrepancies, hindering precise alignment between different imaging modalities. However, existing methods have not been sufficiently adapted to meet the specific demands of registration in such complex scenarios. To overcome the above challenges, we propose SynMSE, a novel multimodal similarity evaluator that can be seamlessly integrated as a plug-and-play module in any registration framework to serve as the similarity metric. SynMSE is trained using random transformations to simulate spatial misalignments and a structure-constrained generator to model grayscale distribution discrepancies. By emphasizing spatial alignment and mitigating the influence of complex distributional variations, SynMSE effectively addresses the aforementioned issues. Extensive experiments on the Learn2Reg 2022 CT-MR abdomen dataset, the clinical cervical CT-MR dataset, and the CuRIOUS MR-US brain dataset demonstrate that SynMSE achieves state-of-the-art performance. Our code is available on the project page <span><span>https://github.com/MIXAILAB/SynMSE</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103620"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001677","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised deformable multimodal medical image registration often confronts complex scenarios, which include intermodality domain gaps, multi-organ anatomical heterogeneity, and physiological motion variability. These factors introduce substantial grayscale distribution discrepancies, hindering precise alignment between different imaging modalities. However, existing methods have not been sufficiently adapted to meet the specific demands of registration in such complex scenarios. To overcome the above challenges, we propose SynMSE, a novel multimodal similarity evaluator that can be seamlessly integrated as a plug-and-play module in any registration framework to serve as the similarity metric. SynMSE is trained using random transformations to simulate spatial misalignments and a structure-constrained generator to model grayscale distribution discrepancies. By emphasizing spatial alignment and mitigating the influence of complex distributional variations, SynMSE effectively addresses the aforementioned issues. Extensive experiments on the Learn2Reg 2022 CT-MR abdomen dataset, the clinical cervical CT-MR dataset, and the CuRIOUS MR-US brain dataset demonstrate that SynMSE achieves state-of-the-art performance. Our code is available on the project page https://github.com/MIXAILAB/SynMSE.
SynMSE:无监督可变形多模态医学图像配准中复杂分布差异的多模态相似性评估器
无监督的可变形多模态医学图像配准经常面临复杂的场景,包括模态域间隙、多器官解剖异质性和生理运动变异性。这些因素引入了实质性的灰度分布差异,阻碍了不同成像模式之间的精确对准。然而,现有的方法还没有充分适应在这种复杂情况下登记的具体要求。为了克服上述挑战,我们提出了一种新的多模态相似性评估器SynMSE,它可以作为一个即插即用模块无缝集成到任何注册框架中,作为相似性度量。SynMSE使用随机变换来模拟空间错位,使用结构约束生成器来模拟灰度分布差异。SynMSE通过强调空间一致性和减轻复杂分布变化的影响,有效地解决了上述问题。在Learn2Reg 2022腹部CT-MR数据集、临床宫颈CT-MR数据集和CuRIOUS MR-US大脑数据集上进行的大量实验表明,SynMSE达到了最先进的性能。我们的代码可以在项目页面https://github.com/MIXAILAB/SynMSE上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信