{"title":"Dynamic cause of saltwater intrusion extremes and freshwater challenges in the Changjiang Estuary in flood season of 2022","authors":"Rui Ma, Cheng Qiu, Jianrong Zhu, Zhilin Zhang, Yiping Zhu, Lingting Kong, Lei Ding, Wei Qiu, Hui Wu","doi":"10.3389/fmars.2025.1573883","DOIUrl":null,"url":null,"abstract":"Estuarine regions heavily rely on the supply of freshwater from rivers, which could suffer saltwater intrusion. In the late summer and autumn of 2022, the Changjiang basin experienced prolonged severe drought, resulting in the river discharge decreasing to its lowest level according to historical records. Furthermore, the Changjiang Estuary was affected successively by three typhoons in September. Saltwater intrusion extremes have occurred since early September, resulting in the Qingcaosha Reservoir, the largest estuarine reservoir in the world, being unsuitable for water intake for 98 days. This has seriously threatened the safety of the water supply in Shanghai. No such extremely severe event has occurred since salinity has been recorded in the estuary, even in the dry season. Our findings show that saltwater intrusion extremes were caused by the combined effect of extremely low river discharge and typhoons, which drove substantial landward water transport to form a horizontal estuarine circulation flowing into the North Channel and out of the South Channel. This landward net water transport overcame seaward runoff and brought highly saline water into the estuary. The extremely low river discharge is the fundamental cause for the severe saltwater intrusion, and the typhoons greatly amplified it. The surface and bottom salinities at the water intake of the Qingcaosha Reservoir were amplified 9.6 and 23.4 times by Typhoon Hinnamonr and 10.1 and 15.1 times by Typhoon Nanmadol, respectively. We reveal the dynamic cause of saltwater intrusion extremes, which is conducive for developing effective response measures for estuarine freshwater resources safety.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"71 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1573883","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Estuarine regions heavily rely on the supply of freshwater from rivers, which could suffer saltwater intrusion. In the late summer and autumn of 2022, the Changjiang basin experienced prolonged severe drought, resulting in the river discharge decreasing to its lowest level according to historical records. Furthermore, the Changjiang Estuary was affected successively by three typhoons in September. Saltwater intrusion extremes have occurred since early September, resulting in the Qingcaosha Reservoir, the largest estuarine reservoir in the world, being unsuitable for water intake for 98 days. This has seriously threatened the safety of the water supply in Shanghai. No such extremely severe event has occurred since salinity has been recorded in the estuary, even in the dry season. Our findings show that saltwater intrusion extremes were caused by the combined effect of extremely low river discharge and typhoons, which drove substantial landward water transport to form a horizontal estuarine circulation flowing into the North Channel and out of the South Channel. This landward net water transport overcame seaward runoff and brought highly saline water into the estuary. The extremely low river discharge is the fundamental cause for the severe saltwater intrusion, and the typhoons greatly amplified it. The surface and bottom salinities at the water intake of the Qingcaosha Reservoir were amplified 9.6 and 23.4 times by Typhoon Hinnamonr and 10.1 and 15.1 times by Typhoon Nanmadol, respectively. We reveal the dynamic cause of saltwater intrusion extremes, which is conducive for developing effective response measures for estuarine freshwater resources safety.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.