Self-Assembled Entanglements in Elastomers for Superior Toughness and Fatigue Resistance

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Jingkai Wang, Jie Sun, Jie Chen, Biao Kang, Ai Lu, Ruolei Zhong, Hongtu He, Guocheng Li, Chengji Wen, Dengtao Yang, Ying Yin
{"title":"Self-Assembled Entanglements in Elastomers for Superior Toughness and Fatigue Resistance","authors":"Jingkai Wang, Jie Sun, Jie Chen, Biao Kang, Ai Lu, Ruolei Zhong, Hongtu He, Guocheng Li, Chengji Wen, Dengtao Yang, Ying Yin","doi":"10.1021/acs.macromol.5c00531","DOIUrl":null,"url":null,"abstract":"To address the long-standing trade-off between modulus, toughness, and fatigue resistance in elastomers, in this study, we propose an innovative strategy based on self-assembled chain entanglements. Unlike conventional strategies, the proposed entanglement-driven composite combines rigid, self-assembled entangled particles with a soft matrix enabled by strong interfacial adhesion. This system synergizes rigid entangled particles (with molecular segment entanglement topology) and the soft matrix to enable energy dissipation across molecular segments, polymer chains, and rigid entangled particles, ultimately achieving simultaneous enhancement of fracture toughness (∼0.043 MJ/m<sup>2</sup>), fatigue threshold (∼300 J/m<sup>2</sup>), and elastic modulus. Implemented via a one-step in situ self-assembly method, this strategy provides novel insights into designing high-performance elastomers.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"107 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00531","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the long-standing trade-off between modulus, toughness, and fatigue resistance in elastomers, in this study, we propose an innovative strategy based on self-assembled chain entanglements. Unlike conventional strategies, the proposed entanglement-driven composite combines rigid, self-assembled entangled particles with a soft matrix enabled by strong interfacial adhesion. This system synergizes rigid entangled particles (with molecular segment entanglement topology) and the soft matrix to enable energy dissipation across molecular segments, polymer chains, and rigid entangled particles, ultimately achieving simultaneous enhancement of fracture toughness (∼0.043 MJ/m2), fatigue threshold (∼300 J/m2), and elastic modulus. Implemented via a one-step in situ self-assembly method, this strategy provides novel insights into designing high-performance elastomers.

Abstract Image

弹性体中的自组装缠结具有优异的韧性和抗疲劳性
为了解决弹性体在模量、韧性和抗疲劳性之间长期存在的权衡问题,在本研究中,我们提出了一种基于自组装链缠结的创新策略。与传统策略不同,所提出的纠缠驱动复合材料将刚性、自组装的纠缠粒子与软基质结合在一起,从而实现了强界面粘附。该系统将刚性纠缠粒子(具有分子段纠缠拓扑)和软基质协同作用,使能量能够在分子段、聚合物链和刚性纠缠粒子之间耗散,最终实现断裂韧性(~ 0.043 MJ/m2)、疲劳阈值(~ 300 J/m2)和弹性模量的同时增强。该策略通过一步原位自组装方法实现,为设计高性能弹性体提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信