Yanting Peng, Zunyi Deng, Siyu Song, Gang Tang, Jiawang Hong
{"title":"First-Principles Investigation of Auxetic Piezoelectric Effect in Nitride Perovskites","authors":"Yanting Peng, Zunyi Deng, Siyu Song, Gang Tang, Jiawang Hong","doi":"10.1039/d5cp01148e","DOIUrl":null,"url":null,"abstract":"The recently reported auxetic piezoelectric effect, which acts as the electrical counterpart of the negative Poisson’s ratio, is of significant technical importance for applications in acoustic wave devices. However, this electric auxetic effect has not yet been reported in perovskite systems. In this work, we employ first-principles calculations to investigate the piezoelectric properties of six polar nitride perovskites with the chemical formula ABN3 (A = La, Sc, Y; B = W, Mo). Among these, all compounds except ScMoN3 exhibit the auxetic piezoelectric effect, which is characterized by an unusually positive transverse piezoelectric coefficient, along with a positive longitudinal piezoelectric coefficient. This behavior is in sharp contrast to previously reported results in HfO2, where both the longitudinal and transverse piezoelectric coefficients are negative. These unusual positive transverse piezoelectric coefficients originate from the domination of the positive internal-strain contribution. We further confirm the auxetic piezoelectric effect with finite electric field calculations. Our research enriches the understanding of the piezoelectric properties of nitride perovskites and provides a new compositional space for the design of novel auxetic piezoelectric materials.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01148e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recently reported auxetic piezoelectric effect, which acts as the electrical counterpart of the negative Poisson’s ratio, is of significant technical importance for applications in acoustic wave devices. However, this electric auxetic effect has not yet been reported in perovskite systems. In this work, we employ first-principles calculations to investigate the piezoelectric properties of six polar nitride perovskites with the chemical formula ABN3 (A = La, Sc, Y; B = W, Mo). Among these, all compounds except ScMoN3 exhibit the auxetic piezoelectric effect, which is characterized by an unusually positive transverse piezoelectric coefficient, along with a positive longitudinal piezoelectric coefficient. This behavior is in sharp contrast to previously reported results in HfO2, where both the longitudinal and transverse piezoelectric coefficients are negative. These unusual positive transverse piezoelectric coefficients originate from the domination of the positive internal-strain contribution. We further confirm the auxetic piezoelectric effect with finite electric field calculations. Our research enriches the understanding of the piezoelectric properties of nitride perovskites and provides a new compositional space for the design of novel auxetic piezoelectric materials.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.