Sara Lucchini,James G Nicholson,Xinyu Zhang,Jacob Househam,Yau Mun Lim,Maximilian Mossner,Thomas O Millner,Sebastian Brandner,Trevor Graham,Silvia Marino
{"title":"A novel model of glioblastoma recurrence to identify therapeutic vulnerabilities.","authors":"Sara Lucchini,James G Nicholson,Xinyu Zhang,Jacob Househam,Yau Mun Lim,Maximilian Mossner,Thomas O Millner,Sebastian Brandner,Trevor Graham,Silvia Marino","doi":"10.1038/s44321-025-00237-z","DOIUrl":null,"url":null,"abstract":"Glioblastoma remains incurable and recurs in all patients. Here we design and characterize a novel induced-recurrence model in which mice xenografted with primary patient-derived glioma initiating/stem cells (GIC) are treated with a therapeutic regimen closely recapitulating patient standard of care, followed by monitoring until tumours recur (induced recurrence patient-derived xenografts, IR-PDX). By tracking in vivo tumour growth, we confirm the patient specificity and initial efficacy of treatment prior to recurrence. Availability of longitudinally matched pairs of primary and recurrent GIC enabled patient-specific evaluation of the fidelity with which the model recapitulated phenotypes associated with the true recurrence. Through comprehensive multi-omic analyses, we show that the IR-PDX model recapitulates aspects of genomic, epigenetic, and transcriptional state heterogeneity upon recurrence in a patient-specific manner. The accuracy of the IR-PDX enabled both novel biological insights, including the positive association between glioblastoma recurrence and levels of ciliated neural stem cell-like tumour cells, and the identification of druggable patient-specific therapeutic vulnerabilities. This proof-of-concept study opens the possibility for prospective precision medicine approaches to identify target-drug candidates for treatment at glioblastoma recurrence.","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":"9 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00237-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma remains incurable and recurs in all patients. Here we design and characterize a novel induced-recurrence model in which mice xenografted with primary patient-derived glioma initiating/stem cells (GIC) are treated with a therapeutic regimen closely recapitulating patient standard of care, followed by monitoring until tumours recur (induced recurrence patient-derived xenografts, IR-PDX). By tracking in vivo tumour growth, we confirm the patient specificity and initial efficacy of treatment prior to recurrence. Availability of longitudinally matched pairs of primary and recurrent GIC enabled patient-specific evaluation of the fidelity with which the model recapitulated phenotypes associated with the true recurrence. Through comprehensive multi-omic analyses, we show that the IR-PDX model recapitulates aspects of genomic, epigenetic, and transcriptional state heterogeneity upon recurrence in a patient-specific manner. The accuracy of the IR-PDX enabled both novel biological insights, including the positive association between glioblastoma recurrence and levels of ciliated neural stem cell-like tumour cells, and the identification of druggable patient-specific therapeutic vulnerabilities. This proof-of-concept study opens the possibility for prospective precision medicine approaches to identify target-drug candidates for treatment at glioblastoma recurrence.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)