{"title":"PROFIS: Design of Target-Focused Libraries by Probing Continuous Fingerprint Space with Recurrent Neural Networks.","authors":"Hubert Rybka,Tomasz Danel,Sabina Podlewska","doi":"10.1021/acs.jcim.5c00698","DOIUrl":null,"url":null,"abstract":"This study introduces PROFIS, a new generative model capable of the design of structurally novel and target-focused compound libraries. The model relies on a recurrent neural network that was trained to decode embedded molecular fingerprints into SMILES strings. To identify potential novel ligands, a biological activity predictor is first trained on the low-dimensional fingerprint embedding space, enabling the identification of high-activity subspaces for a given drug target. The search for latent representations that are expected to yield active structures upon decoding to SMILES is conducted with a Bayesian optimization algorithm. We present the rationale for using SMILES as the output notation of the recurrent neural network and compare its performance with models trained to decode DeepSMILES and SELFIES strings. The paper demonstrates the application of this protocol to generate candidate ligands of the dopamine D2 receptor. It also emphasizes the effectiveness of our approach in scaffold-hopping, which is valuable for designing ligands outside the already explored chemical space. We present how passing engineered molecular fingerprints through PROFIS network can be utilized to generate diverse libraries of analogs for a drug molecule of choice. It is worth noting that the protocol is versatile and it can be employed for any biological target, given the availability of a dataset containing known ligands. The potential for widespread use of PROFIS is secured by scripts shared by the authors on GitHub.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"42 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00698","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces PROFIS, a new generative model capable of the design of structurally novel and target-focused compound libraries. The model relies on a recurrent neural network that was trained to decode embedded molecular fingerprints into SMILES strings. To identify potential novel ligands, a biological activity predictor is first trained on the low-dimensional fingerprint embedding space, enabling the identification of high-activity subspaces for a given drug target. The search for latent representations that are expected to yield active structures upon decoding to SMILES is conducted with a Bayesian optimization algorithm. We present the rationale for using SMILES as the output notation of the recurrent neural network and compare its performance with models trained to decode DeepSMILES and SELFIES strings. The paper demonstrates the application of this protocol to generate candidate ligands of the dopamine D2 receptor. It also emphasizes the effectiveness of our approach in scaffold-hopping, which is valuable for designing ligands outside the already explored chemical space. We present how passing engineered molecular fingerprints through PROFIS network can be utilized to generate diverse libraries of analogs for a drug molecule of choice. It is worth noting that the protocol is versatile and it can be employed for any biological target, given the availability of a dataset containing known ligands. The potential for widespread use of PROFIS is secured by scripts shared by the authors on GitHub.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.