Pericytes under pressure: TRPC3 channels as gatekeepers of capillary flow

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Scott Earley
{"title":"Pericytes under pressure: TRPC3 channels as gatekeepers of capillary flow","authors":"Scott Earley","doi":"10.1126/scisignal.adw7185","DOIUrl":null,"url":null,"abstract":"<div >Intrinsic control of cerebral blood flow in response to intravascular pressure is traditionally attributed to smooth muscle cells in arterioles. However, in this issue of <i>Science Signaling</i>, Ferris <i>et al.</i> demonstrate that capillary constriction is caused by pressure-induced depolarization of pericytes, mural cells that encircle capillaries, and is mediated by TRPC3 cation channels, identifying the channel as critical for fine-tuning brain perfusion.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 884","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adw7185","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsic control of cerebral blood flow in response to intravascular pressure is traditionally attributed to smooth muscle cells in arterioles. However, in this issue of Science Signaling, Ferris et al. demonstrate that capillary constriction is caused by pressure-induced depolarization of pericytes, mural cells that encircle capillaries, and is mediated by TRPC3 cation channels, identifying the channel as critical for fine-tuning brain perfusion.
压力下的周细胞:TRPC3通道作为毛细血管流动的看门人
脑血流响应血管内压力的内在控制传统上归因于小动脉中的平滑肌细胞。然而,在本期《Science Signaling》中,Ferris等人证明毛细血管收缩是由包围毛细血管的周细胞(壁细胞)的压力诱导去极化引起的,并由TRPC3阳离子通道介导,确定该通道对微调脑灌注至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Signaling
Science Signaling BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
9.50
自引率
0.00%
发文量
148
审稿时长
3-8 weeks
期刊介绍: "Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets. The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment. In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信