Vanessa Suessle, Marco Heurich, Colleen T. Downs, Andreas Weinmann, Elke Hergenroether
{"title":"CNN-Based Flank Predictor for Quadruped Animal Species","authors":"Vanessa Suessle, Marco Heurich, Colleen T. Downs, Andreas Weinmann, Elke Hergenroether","doi":"10.1049/cvi2.70024","DOIUrl":null,"url":null,"abstract":"<p>The bilateral asymmetry of flanks, where the sides of an animal with unique visual markings are independently patterned, complicates tasks such as individual identification. Automatically generating additional information on the visible side of the animal would improve the accuracy of individual identification. In this study, we used transfer learning on popular convolutional neural network (CNN) image classification architectures to train a flank predictor that predicted the visible flank of quadruped mammalian species in images. We automatically derived the data labels from existing datasets initially labelled for animal pose estimation. The developed models were evaluated across various scenarios involving unseen quadruped species in familiar and unfamiliar habitats. As a real-world scenario, we used a dataset of manually labelled Eurasian lynx (<i>Lynx lynx</i>) from camera traps in the Bavarian Forest National Park, Germany, to evaluate the model. The best model on data obtained in the field was trained on a MobileNetV2 architecture. It achieved an accuracy of 91.7% for the unseen/untrained species lynx in a complex unseen/untrained habitat with challenging light conditions. The developed flank predictor was designed to be embedded as a preprocessing step for automated analysis of camera trap datasets to enhance tasks such as individual identification.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The bilateral asymmetry of flanks, where the sides of an animal with unique visual markings are independently patterned, complicates tasks such as individual identification. Automatically generating additional information on the visible side of the animal would improve the accuracy of individual identification. In this study, we used transfer learning on popular convolutional neural network (CNN) image classification architectures to train a flank predictor that predicted the visible flank of quadruped mammalian species in images. We automatically derived the data labels from existing datasets initially labelled for animal pose estimation. The developed models were evaluated across various scenarios involving unseen quadruped species in familiar and unfamiliar habitats. As a real-world scenario, we used a dataset of manually labelled Eurasian lynx (Lynx lynx) from camera traps in the Bavarian Forest National Park, Germany, to evaluate the model. The best model on data obtained in the field was trained on a MobileNetV2 architecture. It achieved an accuracy of 91.7% for the unseen/untrained species lynx in a complex unseen/untrained habitat with challenging light conditions. The developed flank predictor was designed to be embedded as a preprocessing step for automated analysis of camera trap datasets to enhance tasks such as individual identification.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf